Reliable Iterative Methods for Solving the Falkner-Skan Equation

Reliable Iterative Methods for Solving the Falkner-Skan Equation

In this work, we suggest reliable iterative methods to solve the Falkner-Skan problem to obtain new approximate solutions. The suggested methods. are Tamimi-Ansari method.(TAM), Daftardair-Jafari. method.(DJM) and Banach countraction method.(BCM). We compare the obtained numerical results with other numerical methods like the Runge-Kutta (RK4) and Euler methods. The fixed point theorm is presented to test the convergence of the suggested methods. Moreover, the results of the remaining maximum error values showing that the suggested methods are reliable and effective. The Software used in our calculations for this work is Mathematica® 10.

___

  • [1] Duque-Daza, C., Lockerby, D., Galeano, C., “Numerical solution of the Falkner-Skan equation using third-order and high-order-compact finite difference schemes”, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 33(4): 381-392, (2011).
  • [2] Bakodah, H., O., Ebaid, A., Wazwaz, A. M., “Analytical and Numerical Treatment Of Falkner-Skan Equation Via A Transformation And Adomian’s Method”, Romanian Reports in Physics, 70(2): 1-17, (2018).
  • [3] Dehghan, M., Tatari, M., Azizi, A., “The solution of the Falkner-Skan equation arising in the modelling of boundary-layer problems via variational iteration method”, International Journal of Numerical Methods for Heat , Fluid Flow, 21(2): 136-149, (2011).
  • [4] Eerdun, B., Eerdun, Q. , Huhe, B. , Temuer, C. , Wang, J. Y., “Variational iteration method with He's polynomials for MHD Falkner-Skan flow over permeable wall based on Lie symmetry method”, International Journal of Numerical Methods for Heat , Fluid Flow, 24(6): 1348-1362 (2014).
  • [5] Madaki, A. G., Abdulhameed, M., Ali, M., Roslan, R., “Solution of the Falkner–Skan wedge flow by a revised optimal homotopy asymptotic method”, Springer Plus, 5(1): 1-8, (2016).
  • [6] Temimi, H., Ben-Romdhane, M., “Numerical solution of falkner-skan equation by iterative transformation method”, Mathematical Modelling and Analysis, 23(1): 139-151, (2018).
  • [7] Moallemi, N., Shafieenejad, I., Hashemi, S. F., Fata, A., “Approximate explicit solution of falkner-skan equation by homotopy perturbation method”, Engineering and Technology, 4(17): 2893-2897, (2012).
  • [8] Yao, B., “Approximate analytical solution to the Falkner–Skan wedge flow with the permeable wall of uniform suction”, Communications in Nonlinear Science and Numerical Simulation,14(8): 3320-3326, (2009).
  • [9] Summiya, P., “Numerical solution of the Falkner Skan Equation by using shooting techniques”, IOSR Journal of Mathematics, 10( 6): 78-83, ( 2014).
  • [10] Kajani, M.T., Maleki, M., Allame, M., “A numerical solution of Falkner-Skan equation via ashifted Chebyshev collocation method”, AIP Conference Proceedings, 1629(1): 381-386, (2014).
  • [11] Stehlík, P., “On variational methods for periodic discrete problems”, Journal of Difference Equations and Applications,14(3): 259-273, (2008).
  • [12] Khabir, M. H., Patida, K. C., “Spline approximation method to solve an option pricing problem”, Journal of Difference Equations and Applications, 18(11): 1801-1816, (2012) .
  • [13] Robin, W. A., “Solving differential equations using modified picard iteration”, International Journal of Mathematical Education in Science and Technology, 41(5): 649-665, (2010).
  • [14] Daftardar-Gejji, V., Jafari, H., “An iterative method for solving nonlinear functional equations”, Journal of Mathematical Analysis and Applications, 316(2): 753-763, (2006).
  • [15] Bhalekar, S., Daftardar-Gejji, V., “New iterative method: Application to partial differential equations”, Applied Mathematics and Computation, 203(2): 778-783, (2008).
  • [16] Daftardar-Gejji, V., Bhalekar, S., “Solving fractional boundary value problems with Dirichlet boundary conditions using a new iterative method”, Computers and Mathematics with Applications, 59(5): 1801- 1809, (2010).
  • [17] AL-Jawary, M. A., Abd-AL-Razaq, S. G., “Analytic and numerical solution for Duffing equations”, International Journal of Basic and Applied Sciences, 5 (2): 115- 119, (2016).
  • [18] Yaseen, M., Samraiz, M., Naheed, S., “The DJ method for exact solutions of Laplace equation”, Results in Physics, 3: 38- 40, (2013).
  • [19] Ehsani, F., Hadi, A., Ehsani, F., Mahdavi, R., “An iterative method for solving partial differential equations and solution of Korteweg-de Vries equations for showing the capability of the iterative method”, World Applied Programming, 3 (8): 320–327, (2013).
  • [20] Temimi, H., Ansari, A. R., “A computational iterative method for solving nonlinear ordinary differential equations”, LMS Journal of Computation and mathematics, 18 (1): 730–753, (2015).
  • [21] AL-Jawary, M. A., AL-Qaissy, H. R., “A reliable iterative method for solving Volterra integrodifferential equations and some applications for the Lane-Emden equations of the first kind”, Monthly Notices of the Royal Astronomical Society, 448(4): 3093-3104, (2015).
  • [22] Temimi, H., Ansari, A. R., “A new iterative technique for solving nonlinear second order multi-point boundary value problems”, Applied Mathematics and Computation, 218(4): 1457-1466 ,(2011).
  • [23] AL-Jawary, M. A., Al-Razaq, S. G., “A semi analytical iterative technique for solving duffing equations”, International Journal of pure and applied Mathematics,108(4): 871-885, (2016). [24] AL-Jawary, M. A. , Raham, R. K., “A semi-analytical iterative technique for solving chemistry problems”, Journal of King Saud University, 29 (3): 320-332, (2017).
  • [25] AL-Jawary, M. A., Hatif, S., “A semi-analytical iterative method for solving differential algebraic equations”, Ain Shams Engineering Journal, 9(4): 2581-2586, (2018).
  • [26] AL-Jawary, M. A., “A semi-analytical iterative method for solving nonlinear thin film flow problems”, Chaos. Solitons and Fractals, 99: 52–56, (2017).
  • [27] AL-Jawary, M. A., Radhi, G., H., Ravnik, J., “A semi-analytical method for solving Fokker-Planck’s equations”, Journal of the Association of Arab Universities for Basic and Applied Sciences, 24(1): 254- 262, (2017).
  • [28] Daftardar-Gejji, V., Bhalekar, S., “Solving nonlinear functional equation using Banach contraction principle”, Far East Journal of Applied Mathematics, 34(3): 303-314, (2009).
  • [29] Latif, A., “Banach contraction principle and its generalizations”, Topics in Fixed Point Theory, 33-64, (2014).
  • [30] Ebaid, A., Aljoufi, M. D., Wazwaz, A. M., “An advanced study on the solution of nanofluid flow problems via Adomian’s method”, Applied Mathematics Letters, 46: 117-122, (2015).
  • [31] Bougoffa, L., Alqahtani, R. T., “Further Solutions Of The Falkner-Skan Equation”, Romanian Journal Of Physics, 63:102, (2018).
  • [32] Alpaslan, P., H., Oturanc, G., “A Semi Analytical Analysis of a Free Convection Boundary Layer Flow Over a Vertical Plate”, arXiv.org,1212.1706, (2012) .
  • [33] Bhalekar, S., Patade, J., “An Analytical Solution of Fisher’s Equation Using Decomposition Method”, American Journal of Computational and Applied Mathematics, 6(3):123-127, (2016).
  • [34] Wazwaz, A. M., “A first course in integral equations”, World Scientific Publishing Company, 328, (2015).
  • [35] Jiao, Y. C., Dang, C. , Yamamoto, Y., “ An extension of the decomposition method for solving nonlinear equations and its convergence”, Computers, Mathematics with Applications, 55(4): 760-775, (2008).
  • [36] Odibat, Z. M., “A study on the convergence of variational iteration method”, Mathematical and Computer Modelling, 51(9-10): 1181-1192, (2010).
  • [37] Monje, Z. A., Ahmed, A.A., “A study of stability of first-order delay differential equations using fixed point theorem banach”, Iraqi Journal of Science, 60(12): 2719-2724, (2019).
  • [38] Abed, S. S., Hasan, Z. M.,“Common fixed point of a finite-step iteration algorithm under total asymptotically quasi-nonexpansive maps”, Baghdad Science Journal, 16(3):654-660, (2019).