In-Vitro Bioactivity Investigation of Sol-Gel Derived Alumina-Bovine Hydroxyapatite (BHA) Composite Powders

In-Vitro Bioactivity Investigation of Sol-Gel Derived Alumina-Bovine Hydroxyapatite (BHA) Composite Powders

Alumina (α-Al2O3) and hydroxyapatite (HA, Ca10(PO4)6(OH)2) are well-known for beingclinically successful bioceramic materials. In this work, in-vitro biological characterization of thesol-gel alumina-bovine hydroxyapatite composite powders was realized. Alumina powders weresynthesized through the sol-gel process. First, boehmite (AlOOH) sol was prepared utilizingaluminium isopropoxide (Al(OC3H7)3, AIP) as the starting precursor. Bovine hydroxyapatite(BHA) powders, which can be defined as naturally derived calcium phosphate powders wereadded as 10, 20, 30, and 50% wt. of AIP to each AlOOH sol. Homogeneous dispersion of theBHA powders in the AlOOH sol was managed due to employing Na-alginate as a kind ofthickener. Gelation of the AlOOH-BHA mixtures was carried out at 110 ºC for 3h. After drying,AlOOH-BHA mixtures were heat-treated at 1300 ºC for 2h. Chemical, microstructural, thermal,and physical properties of the precursors/process products were characterized with X-RayDiffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR), X-Ray FluorescenceSpectroscopy (XRF), Differential Thermal Analysis (DTA), and Scanning Electron Microscopy- Energy Dispersive Spectroscopy (SEM-EDS) analyses. Indirect MTT assay was done toevaluate the biocompatibility of the Al2O3-BHA based biocomposite extracts using the L929 cellline. It is found that all Al2O3-BHA composite extracts with varying doses of 25% and 50% hadno negative effect on the cell viability. In addition, % cell viability decreased with the increasingof the extract concentration. It can be concluded that the prepared Al2O3-BHA composites can be a good candidate for biomedical applications.

___

  • [1] Ratner, B.D., Hoffman, A.S., Schoen, F.J., Lemons, J.E. (eds.), “Biomaterials Science: An Introduction to Materials in Medicine”, 2nd ed., Elsevier Academic Press, New York-London, (2004).
  • [2] Ramakrishna, S., Huang, Z.M., Kumar, G.V., Batchelor, A.W., Mayer, J., “An Introduction to Biocomposites Series on Biomaterials and Bioengineering Vol.1”, Imperial College Press, London, (2004).
  • [3] Chakraborty, J., Basu, D., “Bioceramics-a new era”, Transactions of the Indian Ceramic Society, 64(4): 171-192, (2005).
  • [4] Iyoda, K., Miura, T., Nogami, H., “Repair of bone defect with cultured chondrocytes bound to HA”, Clinical Orthopaedics and Related Research, 288: 287-293, (1993).
  • [5] Van Susante, J.L., Buma, P., Homminga, G.N., Van Den Berg, W.B., Veth, R.P., “Chondrocyte-seeded hydroxyapatite for repair of large articular cartilage defects: A pilot study in the goat”, Biomaterials, 19(24): 2367-2374, (1998).
  • [6] Bartonickova, E., Vojtisek, J., Tkacz, J., Porizka, J., Masilko, J., Moncekova, M., Parizek, L., “Porous HA/alumina composites intended for bone-tissue engineering”, Materials and Technology, 51(4): 631-636, (2017).
  • [7] Tayyebi, S., Mirjalili, F., Samadi, H., Nemati, A., “Review of synthesis and properties of hydroxyapatite/alumina nano composite powder”, Chemistry Journal, 5(2): 20-28, (2015).
  • [8] Oktar, F.N., Agathopoulos, S., Ozyegin, L.S., Gunduz, O., Demirkol, N., Bozkurt, Y., and Salman, S., “Mechanical properties of bovine hydroxyapatite (BHA) composites doped with SiO2, MgO, Al2O3 and ZrO2”, Journal of Materials Science: Materials in Medicine, 18: 2137-2143, (2007).
  • [9] Evis, Z., Doremus, R.H., “Coatings of hydroxyapatite-nanosize alpha alumina composites on Ti-6Al-4V”, Materials Letters, 59: 3824-3827, (2005).
  • [10] Sivaperumal, V.R., Mani, R., Nachiappan, M.S., Arumugam, K., “Direct hydrothermal synthesis of hydroxyapatite/alumina nanocomposite”, Materials Characterization, 134: 416-421, (2017).
  • [11] Gupta, A., Tripathi, G., Lahiri, D., Balani, K., “Compression molded ultra high molecular weight polyethylene-hydroxyapatite-aluminum oxide-carbon nanotube hybrid composites for hard tissue replacement”, Journal of Materials Science & Technology, 29(6): 514-522, (2013).
  • [12] Yoldas, B.E., “Alumina sol preparation from alkoxides”, American Ceramic Society Bulletin, 54(3): 289-290, (1975).
  • [13] Wright, J.D., Sommerdijk, N.A.J.M., “Sol-Gel Materials Chemistry and Applications Advanced Chemistry Texts”, CRC Press, Boca Raton, (2001).
  • [14] Gvishi, R., “Fast sol-gel technology: from fabrication to applications”, Journal of Sol-Gel Science and Technology, 50: 241-253, (2009).
  • [15] Mackenzie, J.D., “Sol-gel research-achievements since 1981 and prospects for the future”, Journal of Sol-Gel Science and Technology, 26: 23-27, (2003).
  • [16] Belleville, P., “Functional coatings”, Comptes Rendus Chimie, 13: 97-105, (2010).
  • [17] Yelten, A., “Properties and characterization of alumina-bovine hydroxyapatite (BHA) composites produced by sol-gel method”, MSc. Thesis, Istanbul University Institute of Graduate Studies in Science and Engineering, Istanbul, (2010).
  • [18] Yelten, A., Yilmaz, S., Oktar, F.N., “Sol-gel derived alumina-hydroxyapatite-tricalcium phosphate porous composite powders”, Ceramics International, 38(4): 2659-2665, (2012).
  • [19] Dressler, M., Nofz, M., Neumann, R.S., Dorfel, I., Griepentrog, M., “Sol-gel derived alumina layers on nickel base superalloy inconel-718 (IN-718)”, Thin Solid Films, 517: 786-792, (2008).
  • [20] Jing, C., Zhao, X., Zhang, Y., Sol-gel fabrication of compact, crack- free alumina film, Materials Research Bulletin, 42: 600-608, (2007).
  • [21] Nofz, M., Dorfel, I., Sojref, R., “Microstructure of sol-gel derived corundum containing coatings”, Thin Solid Films, 515: 7145-7154, (2007).
  • [22] Jaber, H.L., Hammood, A.S., and Parvin, N., “Synthesis and characterization of hydroxyapatite powder from natural Camelus bone”, Journal of the Australian Ceramic Society, 54: 1-10, (2018).
  • [23] Kalkandelen, C., Gunduz, O., Akan, A., Oktar, F.N., “Part 1: Clinoptilolite-alumina-hydroxyapatite composites for biomedical engineering”, Journal of the Australian Ceramic Society, 53: 91-99, (2017).
  • [24] Alavarse, A.C., Oliveira Silva, F.W., Colque, J.T., Silva, V.M., Prieto, T., Venancio, E.C., Bonvent, J.J., “Tetracycline hydrochloride-loaded electrospun nanofibers mats based on PVA and chitosan for wound dressing”, Materials Science and Engineering C, 77: 271-281, (2017).
  • [25] Srivastava, G.K., Alonso-Alonso, M. L., Fernandez-Bueno, I., Garcia-Gutierrez, M. T., Rull, F., Medina, J., Pastor, J.C., “Comparison between direct contact and extract exposure methods for PFO cytotoxicity evaluation”, Scientific Reports, 8(1): 1-9, (2018).
  • [26] Tian, X.Y., Li, M.G., Cao, N., Li, J.W., Chen, X.B., “Characterization of the flow behavior of alginate/hydroxyapatite mixtures for tissue scaffold fabrication”, Biofabrication, 1(4): 1-8, (2009).
  • [27] Akhondi, H., Nassaj, E.T., Gilan, A.T., “Gelcasting of alumina-zirconia-yttria nanocomposites with Na-alginate system”, Journal of Alloys and Compounds, 484: 452-457, (2009).
  • [28] Liao, C.J., Lin, F.H., Chen, K.S., Sun, J.S., “Thermal decomposition and reconstitution of hydroxyapatite in air atmosphere”, Biomaterials, 20: 1807-1813, (1999).
  • [29] Gross, K.A., Gross, V., Berndt, C.C., “Thermal analysis of amorphous phases in hydroxyapatite coatings”, Journal of the American Ceramic Society, 81(1): 106-112, (1998).
  • [30] Abidi, S.S.A., Murtaza Q., “Synthesis and characterization of nano-hydroxyapatite powder using wet chemical precipitation reaction”, Journal of Materials Science & Technology, 30(4): 307-310, (2014).
  • [31] Kumar, R., Prakash, K.H., Cheang, P., “Temperature driven morphological changes of chemically precipitated hydroxyapatite nanoparticles”, Langmuir, 20: 5196-5200, (2004).
  • [32] Ramesh, S., Aw, K.L., Tolouei, R., Amiriyan, M., Tan, C.Y., Hamdi, M., Purbolaksono, J., Hassan, M.A., Teng, W.D., “Sintering properties of hydroxyapatite powders prepared using different methods”, Ceramics International, 39(1): 111-119, (2013).
  • [33] Chandrasekar, A., Sagadevan, S., Dakshnamoorthy, A., “Synthesis and characterization of nanohydroxyapatite (n-HAP) using the wet chemical technique”, International Journal of Physical Sciences, 8(32): 1639-1645, (2013).
  • [34] Sakka, S., Ben Ayed, F., Bouaziz, J., “Mechanical properties of tricalcium phosphate-alumina composites”, IOP Conference Series: Materials Science and Engineering, 28: 012028, (2012).
  • [35] Pazarlioglu, S., Salman, S. “Effect of lanthanum oxide additive on the sinterability, physical/mechanical, and bioactivity properties of hydroxyapatite-alpha alumina composite”, Journal of the Australian Ceramic Society, 55(4): 1195-1209, (2019).
  • [36] Liu, J., Yang, Y., Hassanin, H., Jumbu, N., Deng, S., Zuo, Q., Jiang, K. “Graphene–alumina nanocomposites with improved mechanical properties for biomedical applications”, ACS Applied Materials & Interfaces, 8(4): 2607-2616, (2016).
  • [37] Beyzay, F., Hosseini, A. Z., Soudi, S. “Alpha alumina nanoparticle conjugation to cysteine peptidase A and B: an efficient method for autophagy induction”, Avicenna Journal of Medical Biotechnology, 9(2): 71, (2017).
  • [38] Li, Z. H., Wu, J. M., Huang, S. J., Guan, J., Zhang, X. Z. “Strontium hydroxyapatite synthesis, characterization and cell cytotoxicity”, Advanced Materials Research, 160: 117-122, (2011).
  • [39] Song, Y., Ju, Y., Song, G., Morita, Y., “In vitro proliferation and osteogenic differentiation of mesenchymal stem cells on nanoporous alumina”, International Journal of Nanomedicine, 8: 2745- 2756, (2013).