A New Methodology to Describe Non-Linear Characterization Depending on Temperature of a Semi-Active Absorber Based on Bouc-Wen Model

A New Methodology to Describe Non-Linear Characterization Depending on Temperature of a Semi-Active Absorber Based on Bouc-Wen Model

The nonlinear behavior of semi-active magneto-rheological (MR) absorbers should be described for improving control algorithms. Also, overheating in the working conditions of the MR absorber due to current excitation and high damping velocity seriously changes the characteristic of the MR fluid and causes problems for controllability. The relationship between damping performance and temperature must be defined in the control algorithms that control the absorber when used in a system such as structure, vehicle, and medical haptic. In this work, a new methodology has been presented to describe dynamic behaviours of MR absorber depending on temperature based on the Bouc-Wen model. Seven parameters in the Bouc-Wen model have been evaluated depending on temperature. Thus, damper force has been defined depending on temperature with a single equation that significantly simplifies the control process. When the experimental and the model results have been compared, it was shown that the error rates varied between %0.89 and %8.4. The average errors of the displacement, time and velocity have been 1.75%, 6.6%, and 4.4%, respectively. 

___

  • [1] Ferdaus, M. M., Rashid, M. M., Hasan, M. H., Yosuf, H. B. M., Bhuiyan, M. M. I., Alraddadi, A., “Temperature effect analysis on magnetorheological damper's performance”, Journal of Automation and Control Engineering 2(4): 392-396, (2014).
  • [2] Spencer, B. F., Dyke, S. J., Sain, M. K., Carlson, J. D., “Phenomenological Model of a Magnetorheological Damper”, Journal of Engineering Mechanics-ASME, 123(3): 230–238, (1997).
  • [3] Boada, M. J. L., Calvo, J. A., Boada, B. L., Díaz, V., “Modeling of a magnetorheological damper by recursive lazy learning”, International Journal of Non-Linear Mechanics, 46(3): 479-485, (2011).
  • [4] Ehrgott, R. C., Masri, S. F., “Modeling the oscillatory dynamic behaviour of electrorheological materials in shear”, Smart Materials and Structures, 1(4): 275–285(1992).
  • [5] Gavin, H. P., Hanson, R. D., Filisko, F. E., “Electrorheological dampers, Part II: testing and modeling”, Journal of Applied Mechanics, 63: 676–682, (1996).
  • [6] Chang, C. C., Roschke, P., “Neural network modeling of a magnetorheological damper”, Journal of Intelligent Material Systems and Structures, 9(9): 755–764, (1998).
  • [7] Chang, C. C., Zhou, L., “Neural network emulation of inverse dynamics for a magnetorheological damper”, Journal of Structural Engineering, 128(2): 231–239, (2002).
  • [8] Wang, D. H., Liao, W. H., “Modeling and control of magnetorheological fluid dampers using neural networks”, Smart Materials and Structures, 14(1): 111–126, (2004).
  • [9] Du, H., Lam, J., Zhang, N., “Modelling of a magnetorheological damper by evolving radial basis function networks”, Engineering Applications of Artificial Intelligence, 19(8): 869–881, (2006).
  • [10] Schurter, K. C., Roschke, P. N., “Fuzzy modeling of a magnetorheological damper using ANFIS”, Proceedings of IEEE International Conference on Fuzzy Systems, San Antonio, TX, USA, 1: 122–127, (2000).
  • [11] Wilson, C. M. D., Abdullah, M. M., “Structural vibration reduction using fuzzy control of magnetorheological dampers” In Structures Congress 2005: Metropolis and Beyond, New York, USA, 1: 1-12, (2005).
  • [12] Stanway, R., Sproston, J. L., Stevens, N. G., “Non-linear modelling of an electrorheological vibration damper”, Journal of Electrostatics, 20(2): 167–184, (1987).
  • [13] Gamota, D. R., Filisko, F. E., “Dynamic mechanical studies of electrorheological materials: moderate frequencies”, Journal of Rheology, 35(3): 399-425, (1991).
  • [14] Wereley, N. M., Pang, L., Kamath, G. M., “Idealized hysteresis modeling of electrorheological and magnetorheological dampers”, Journal of Intelligent Material Systems and Structures, 9(8): 642-649, (1998).
  • [15] Choi, S. B., Lee, S. K., Park, Y. P., “A hysteresis model for the field-dependent damping force of a magnetorheological damper”, Journal of Sound and Vibration, 245(2): 375–383, (2001).
  • [16] Dominguez, A., Sedaghati, R., Stiharu, I., “A new dynamic hysteresis model for magnetorheological dampers”, Smart Material and Structure, 15(5): 1179–1189, (2006).
  • [17] Felt, D. W., Hagenbuchle, M., Liu, J., Richard, J., “Rheology of a magnetorheological fluid”, Journal of Intelligent Material Systems and Structures, 7(5): 589-593, (1996).
  • [18] Yasrebi, N., Ghazavi, A., Mashhadi, M. M., Yousefi-Koma, A., “Magnetorheological fluid dampers modeling: Numerical and experimental”, In Proceeding of the 17th IASTED international conference modeling and, simulation, Isfahan, Iran, 1: (1-6), (2006).
  • [19] Dyke, S. J., Spencer, B. F., “A comparison of semi-active control strategies for the MR damper”, IEEE In Intelligent Information Systems, Grand Bahama Island, Bahamas, 1: 580-584, (1997).
  • [20] Dimock, G. A., Lindler, J. E., Wereley, N. M., “Bingham biplastic analysis of shear thinning and thickening in magnetorheological dampers”, SPIE's 7th Annual International Symposium on Smart Structures and Materials, Newport Beach, CA, United States, 3985: 444-456, 2000.
  • [21] Wereley, N. M., Pang, L., “Nondimensional analysis of semi-active electrorheological and magnetorheological dampers using approximate parallel plate models”, Smart Materials and Structures, 7(5): 732-743, (1998).
  • [22] Li, W. H., Du, H., “Design and experimental evaluation of a magnetorheological brake”, The International Journal of Advanced Manufacturing Technology, 21(7): 508-515, (2003).
  • [23] Ellam, D. J., Atkin, R. J., Bullough, W. A., “Analysis of a smart clutch with cooling flow using two-dimensional Bingham plastic analysis and computational fluid dynamics”, Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 219(8): 639-652, (2005).
  • [24] Wang, X., Gordaninejad, F., “Flow analysis and modeling of field-controllable, electro-and magnetorheological fluid dampers”, Journal of Applied Mechanics, 74(1): 13-22, (2007).
  • [25] Wereley, N. M., “Nondimensional Herschel—Bulkley analysis of magnetorheological and electrorheological dampers”, Journal of Intelligent Material Systems and Structures, 19(3): 257-268, (2008).
  • [26] Balamurugan, L., Jancirani, J., Eltantawie, M. A., “Generalized magnetorheological (MR) damper model and its application in semi-active control of vehicle suspension system”, International Journal of Automotive Technology, 15(3): 419-427, (2014).
  • [27] Moradi Nerbin, M., Mojed Gharamaleki, R., Mirzaei, M., “Novel optimal control of semi-active suspension considering a hysteresis model for MR damper”, Transactions of the Institute of Measurement and Control, 39(5): 698-705, (2017).
  • [28] McKee, M., Gordaninejad, F., Wang, X., “Effects of temperature on performance of compressible magnetorheological fluid suspension systems”, Journal of Intelligent Material Systems and Structures, 29(1): 41-51, (2018).
  • [29] Priya, C. B., Gopalakrishnan, N., “Experimental Investigations of the Effect of Temperature on the Characteristics of MR Damper”, In Recent Advances in Structural Engineering, Singapore, 2: 435-443, (2018).
  • [30] Patel, D. M., Upadhyay, R. V., “Predicting the thermal sensitivity of MR damper performance based on thermo-rheological properties”, Materials Research Express, 6(1): 015707, (2018).
  • [31] Dong, X., Yu, J., Wang, W., Zhang, Z., “Robust design of magnetorheological (MR) shock absorber considering temperature effects”, The International Journal of Advanced Manufacturing Technology, 90(5-8): 1735-1747, (2017).
  • [32] Priya, C. B., Gopalakrishnan, N., “Temperature dependent modelling of magnetorheological (MR) dampers using support vector regression”, Smart Materials and Structures, 28(2): 025021, (2019).
  • [33] Sherman, S. G., Powell, L. A., Becnel, A. C., Wereley, N. M., “Scaling temperature dependent rheology of magnetorheological fluids”, Journal of Applied Physics, 117(17): 17C751, (2015).
  • [34] Liang, G., Zhao, T., Li, N., Wei, Y., Savaresi, S. M., “Magnetorheological damper temperature characteristics and control-oriented temperature-revised model”, Smart Materials and Structures, 30(12): 125005, (2021).
  • [35] Du, C., Zeng, F., Liu, B., Fu, Y., “A novel magnetorheological fluid damper with a heat insulation function”, Smart Materials and Structures, 30(7): 075001, (2021).
  • [36] Savaia, G., Corno, M., Panzani, G., Sinigaglia, A., Savaresi, S. M., “Temperature Estimation in a Magneto–Rheological Damper”, In 2020 IEEE Conference on Control Technology and Applications, CCTA, 1: 567-572, (2021).
  • [37] Jastrzębski, Ł., Sapiński, B., Kozieł, A., “Automotive mr shock absorber behaviour considering temperature changes: experimental testing and analysis. acta mechanica et automatic”, 14(1), (2020).
  • [38] Parlak, Z., Engin, T., Çeşmeci, Ş., Şahin, İ., “Dynamic characterization of a vehicle magnetorheological damper”, International Journal of Vehicle Design, 59(2/3): 129-146, (2012).
  • [39] Lord Corporation, “MRF-132DG Magneto-Rheological Fluid”, http://www.lordmrstore.com/_literature_231215/Data_Sheet_-_MRF-132DG_Magneto-Rheological_Fluid, (2021).
  • [40] Spencer, B. F. Jr., “Reliability of Randomly Excited Hysteretic Structures”. Berlin: Springer, 21: 77-93, (1986).
  • [41] Yao, G. Z., Yap, F. F., Chen, G., Li, W., Yeo, S. H., “MR damper and its application for semi-active control of vehicle suspension system”, Mechatronics, 12(7): 963-973, (2002).
Gazi University Journal of Science-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1988
  • Yayıncı: Gazi Üniversitesi, Fen Bilimleri Enstitüsü
Sayıdaki Diğer Makaleler

Single Solitary Wave and Wave Generation Solutions of the Regularised Long Wave (RLW) Equation

Ali BAŞHAN

Temperature Compensation of FBG Sensors via Sensor Packaging Approach for Harsh Environmental Applications

Mehmet Mücahit ARSLAN, Gökay BAYRAK

Effect of Deposition Temperature on the Properties of Copper-Zinc Sulphide Thin Films using Mixed Copper and Zinc Dithiocarbamate Precursors

Joseph EMEGHA, Bolutife OLOFİNJANA, Kingsley UKHUREBOR, Uyiosa AİGBE, Samuel AZİ, Marcus ELERUJA

Analysis Of The Educational Environments Of Konya Science Center In The Context Of Space And Technology

Asiye SIRTKAYA UZUN, Sebnem ERTAS BESIR

Green Supplier Selection Based on the Combination of Fuzzy SWARA (SWARA-F) and Fuzzy MARCOS (MARCOS-F) Methods

Ayşegül TUŞ, Esra AYTAÇ ADALI

Secured Compression for 2D Medical Images Through the Manifold and Fuzzy Trapezoidal Correlation Function

P Naga SRİNİVASU, Norita NORWAWİ, Shanmuk Srinivas AMİRİPALLİ, P DEEPALAKSHMİ

LSTM-Based Deep Learning Methods for Prediction of Earthquakes Using Ionospheric Data

Rayan ABRİ, Harun ARTUNER

Decision Making in Evaluation and Selection of Launch Site with The Best and Worst Method

İbrahim ÖZ

Mineral and Chemical Characterization of Magnetic and Non - Magnetic Products Obtained from Dry Magnetic Enrichment of Lignite Coals

Meryem SEFERİNOGLU, Derya DÜZENLİ

GIS-based Services Analysis and Multi-Criteria for An Optimal Planning of Police Station Location

Ranya ELSHEİKH