Two Flying Capacitors Cascaded Sub-Multilevel Inverter with Five Switches for DC–AC Conversion

This paper presents a novel topology for cascaded multilevel inverters that only two flying capacitors apply single DC source voltage to all sub-multilevel inverters. The output voltages of each sub-multilevel inverters unit, which each unit can produce five voltage levels, are cascaded using low frequency transformers. Suggested topology have advantages of both original flying capacitor and cascaded H-bridge and in the same time reduces the amount of switching devices, DC sources, capacitors and natural self-balancing of the flying capacitors. Besides, it can operates in symmetric an asymmetric states and four algorithms for calculating of turn ratio of transformers have been presented. Simulation results of the proposed inverter are presented and carried out by MATLAB/SIMULINK to verify its voltage generating ability.

___

  • Lai, J. S. and Peng, F. Z., “Multilevel converters — A new breed of power converters,” IEEE Trans. Ind. Appl. 32: 509–517, (1996).
  • Lezana, P., Rodriguez,J. and Oyarzun, D. A., “Cascaded multilevel inverter with regeneration capability and reduced number of switches,” IEEE Trans. Ind. Electron., 55(3): 1059–1066, (2008).
  • Meynard, T. A., Foch, H., Forest, F., Turpin, C., Richardeau, F., Delmas, L., Gateau, G. and Lefeuvre, E., “Multicell converters: Derived topologies,” IEEE Trans. Ind. Electron., 49(5): 978–987, (2002).
  • Du, Z., Tolbert, L. M., Ozpineci, B. and J. Chiasson, N., “Fundamental frequency switching strategies of a seven- level hybrid cascaded H-bridge multilevel inverter,” IEEE Trans. Power Electron., 24(1): 25–33, (2009).
  • Corzine, K. A. and Familiant, Y. L., “A new cascaded multi-level H-bridge drive,” IEEE Trans. Power Electron. 17: 125–131, (2002).
  • Chiasson, J., Tolbert, L., Kenzie, K. Mc. and Du, Z., “Real-time computer control of a multilevel converter using the mathematical theory of resultants,” Elsevier J. Math. Comput. Simul. 63: 197–208, (2003).
  • Zhiguo P. and Peng, F. Z., “Harmonics optimization of the converter/inverter systems,” IEEE, 39th Annual control for multilevel Industry Applications Conference, 4: 2194–2201, (3–7 October 2004).
  • Nabae, A., Takahashi, I. and Akagi, H., “A new neutral- point clamped PWM inverter,” IEEE Trans. Ind. Applicat., 17: 518–523, (1981).
  • Rodriguez, J., Lai, J.S. and Peng, F. Z., “Multilevel Inverter: A Survey of Topologies, Controls, and applications,” IEEE Trans. On Industrial Electronics, 49(4):724-738, (August 2002).
  • Hammond, P., “A new approach to enhance power quality for medium voltage ac drives,” IEEE Trans. Ind. Applicat., 33:202–208, (1997).
  • Cengelci, E., Sulistijo, S. U., Woom, B. O., Enjeti, P., Teodorescu, R. and Blaabjerge, F., “A new medium voltage PWM inverter topology for adjustable speed drives,” Conf. Rec. IEEE-IAS Annu. Meeting, St. Louis, MO: 1416–1423, 1998.
  • Meynard, T. A., Fadel, M. and Aouda, N., “Modelling of multilevel converters,” IEEE Trans. Ind. Electron., 44: 356–364, (1997).
  • Barcenas, E., Ramirez, S., Cardenas, V. and Echavarria, R., “Cascaded multilevel inverter with only one dc source,” VIII IEEE Inter. Tech. CIEP, : 171-176, (2002).
  • Gateau, G. Meynard, T. A. and Foch, H., “Stacked multicell converter (SMC): Properties and design,” IEEE PESC Meeting, :1583–1588, (2001).
  • Sadigh, A. K., Hosseini, S. H., Barakati, S. M. and Gharehpetian, G., “Stacked multicell converter based DVR with energy minimized compensation strategy,” 41st North Amer. Power Symp., :1–6, (2009).
  • McGrath, B. P. and Holmes, D. G., “Analytical modeling of voltage balance dynamics for a flying capacitor multilevel converter,” IEEE Trans. Power Electron., 23: 543–550, (2008).
  • Wilkinson, R. H., Mouton, H. D. T. and Meynard, T. A., “Natural balance of multicell converters,” IEEE-PESC, :1307–1312, (2003).
  • Lezana, P. and Rodriguez, J., “Mixed Multicell Cascaded Multilevel Inverter,” Industrial Electronics, ISIE 2007, IEEE International Symposium,: 509–514, (2007).
  • Sadigh, A. K., Hosseini, S. H., Sabahi, M. and Gharehpetian, G. B., “Double flying capacitor multicell converter based on modified phase-shifted pulse width modulation” IEEE Trans. Power Electron., 25(6):1517- 1526, (June 2010).
  • Lienhardt, A. M., Gateau, G. and Meynard, T. A., “Digital sliding-mode observer implementation using FPGA,” IEEE Trans. Ind. Electron., 54: 1865–1875, (2007).
  • Rech, C. and Pinheiro, J. R., “Hybrid Multilevel Converters: Considerations” IEEE Trans. Ind. Electron, 54: 1092- 1104, (2007). Analysis and Design
  • Lai Y. S., and Shyu, F. S., “Topology for hybrid multilevel inverter,” IEE Proc. Electr. Power Applicat., 149: 449-458, (2002).
  • Babaei, E., Hosseini, S. H., Gharehpetian, G. B., Tarafdar Haque, M. and Sabahi, M., “Reduction of dc voltage sources and switches in asymmetrical multilevel converters using a novel topology,” Electric Power Systems Research, (2007)1073–1085.
  • Babaei, E., “Optimal Topologies for Cascaded Sub- Multilevel Converters,” Journal of Power Electronics, 10: 251-261, (2010).
  • Neves, W. L. A. and Dommel, H. W., “Saturation curves of delta-connected transformers from measurements,” IEEE Trans. Power Del., 10(3):1432–1437, (1995).
  • Pylvanainen, J., Nousiainen, K. and Verho, P., “Studies to Utilise Calculated Condition Information and Measurements for Transformer Condition Assessment,” International Review of Electrical Engineering (I.R.E.E.), 4: 684-689, (2009).
  • L. Bolduc, A. Gaudreau, A. Dutil, , “Saturation time of transformers under dc excitation, ” Electric Power Systems Research, 56: 95-102, (2000).
  • Tousignant, D., Bolduc, L. and Dutil, A., “A method for the indication of power transformer saturation, Electric Power Systems Research, 37(1996)115-120.
  • Kang, F. S., Park, S. J. and Kim, C. U., “Multilevel inverter employing cascaded transformers,” IEEE Industrial Electronics Society Conference, : 2169– 2174, (2003).
  • Calais, M., G. Agelidis, V. G. and Meinhardt, M., “Multilevel converters for single-phase grid connected photovoltaic systems: an overview,” Sol. Energy, 66: 325–335, (1999).