Ab-initio investigation of electronic and optical properties of InAs1-xPx alloys

The electronic energy band structure and linear optical properties InAs1-xPx alloys are investigated by an abinitio pseudopotential method using density functional theory in the local density approximation (LDA) and a scissors approximation. The calculated band gap energy and density of state (DOS). Electronic band structure shows that InAs1-xPx alloys are direct band gap and the optical band gap increase from 0.24 to 1.20 eV with increasing P concentrations. The linear energy dependent dielectric functions and some optical properties such as absorption, energy loss function refractive index and reflectivity calculated. Our results agree well with the available data in the literature.Key Words: Alloys, Electronic structures, Optical properties.     
Keywords:

-,

___

  • Smokal, V., Derkowska, B., Czaplicki, R., “Nonlinear optical properties of Zn1-xMgxSe and Cd1-xMgxSe crystals”, Optical Materials, 31: 518 –522 (2009).
  • Chen, A-B., Sher, A., “Electronic structure of pseudobinary semiconductor alloys AlxGa1-xAs, GaPxAs1-x, and GaxIn1-xP” Phys. Rev. B, 23: 5360– 5374 (1980).
  • Shimomura, A., Anan, T., Sugou, S., “Growth of AlPSb and GaPSb on InP by gas-source molecular beam epitaxy”, J. Cryst. Growth, 162: 121-125 (1996).
  • Sahraoui, B., Dabos-Seignon, S., Migalska-Zalas, A., “Linear and nonlinear optical properties Zn1- xMgxSe layers grown by MBE and LPD method” Opto-Electronics Review, 12: (4) 405-409 (2004).
  • Fredj, Debbichi, M., Said, M., “Influence of the composition fluctuation and the disorder on the bowing band gap in semiconductor materials”, Microelectronic J., 38: 860–870 (2007).
  • M. Robinson, P.D. Haynes, “Linear-scaling first- principles study of a quasicrystalline molecular material”, Chem. Phys. Lett., 476: 73-77 (2009).
  • Kohn, W., Sham, L.J., “Self-consistent equations including exchange and correlation effects”, Phys. Rev., 140: A1133–A1138 (1965).
  • Fischer, T H, Almlof, J., “General methods for geometry and wave function optimization”, J. Phys. Chem., 96: (24) 9768–9774 (1992).
  • Ceperley, D.M., Alder, B.J., “Ground state of the electron gas by a stochastic method”, Phys. Rev. Lett., 45: 566–569 (1980).
  • Perdew, J.P., Zunger, A., “Self-interaction
  • correction to density-functional approximations for many-electron systems”, Phys. Rev. B, 23: 5048– 5079 (1981).
  • Troullier, N., Martins, “Efficient pseudopotentials for plane-wave calculations”, J. Phys. Rev. B, 43: 1993–2006 (1993).
  • Vurgaftmana, I., Meyer, J.R., “Band parameters for III–V compound semiconductors and their alloys”, J. of Apll. Phys., 89: 5818- 5846 (2001). [13] Wang, S.Q., Yes, H.Q., “Plane-wave pseudopotentials study on mechanical and electronic properties for IV and III-V crystalline phases with zinc-blende structure”, Phys. Rev. B, 66: 2351111-235111 (2002).
  • Trägardh, J., Persson, A.J., “Measurements of the band gap of wurtzite InAs1−xPx nanowires using photocurrent spectroscopy”, J. of Appl. Phys., 101: 123701-123705 (2007).
  • Kim, T.J., Ghong, T.H., Kim, Y.D., “Dielectric functions of InxGa1-xAs alloys”, Phys. Rev. B, 68: 115323- 115339 (2003).
  • Serpone, N., Lawless, D., Khairutdinov, R., “Subnanosecond relaxation dynamics in TiO2 colloidal Sols (particle sizes Rp = 1.0-13.4 nm). relevance to heterogeneous photocatalysis”, J. Phys. Chem., 99: (45) 16655–16661 (1995).
  • Bachrach, R.Z., Hakki, B.W., “Magnetic hardening induced by ferromagnetic-antiferromagnetic”, J. Appl. Phys., 89: 5103- 5106 (1971).