Dynamic Modeling and Experimental Validation of a Dual-Stator PMSG for Low Speed Applications

This research work develops dynamic model and experimental validation of a dual-star PMSG. A technique of transforming the two stator winding sets to the two winding couples on the d-q axes of the rotor reference frame is utilized in dynamic modeling issue. The implemented technique results in simplifying of analyzing of the machine. To validate the developed dynamic model of the machine, the same PMSG used with the dynamic modeling is constructed and used in an experimental set-up. The simulation and experimental results prove the proper performance of the developed model of the machine and its experimental design.

___

  • -
  • S. M. Dehghan, M. Mohamadian, and A. Y. Varjani, A New Variable-Speed Wind Energy Conversion System Using Permanent-Magnet Synchronous Generator and Z-Source Inverter, IEEE Transactions on Energy Conversion, 24: 714-724 (2009). 2.
  • S. Zhang, K.-J. Tseng, D. M. Vilathgamuwa, T. D. Nguyen, and X.-Y. Wang, Design of a Robust Grid Interface System for PMSG-Based Wind Turbine Generators, IEEE Transactions on Industrial Electronics, 58:316-328 (2011). 3.
  • C. H. Ng, M. A. Parker, L. Ran, P. J. Tavner, J. R. Bumby, and E. Spooner, A Multilevel Modular Converter for a Large, Light Weight Wind Turbine Generator,
  • Electronics, 2:31062-1074 (2008). on Power 4.
  • Z. Chen, J. M. Guerrero, and F. Blaabjerg, A review of the state of the art of power electronics for wind turbines, IEEE Transactions on Power Electronics, 24:1859-1875 (2009). 5.
  • J. M. Carrasco, L. G. Franquelo, J. T. Bialasiewicz, E. Galvan, R. C. P. Guisado, A. M. Prats, J. I. Leon, and N. Moreno-Alfonso, Powerelectronic systems for the grid integration of renewable energy sources: A survey, IEEE Transactions on Industrial Electronics, 53:1002-1016 (2006). 6.
  • H. Polinder, F. F. A. Van de Pijl, G.-J. de Vilder, and P. J. Tavner, Comparison of Direct Drive and Geared Generator Concepts for Wind Turbines, IEEE Transactions on Energy Conversion, 21:725- 733 (2006). 7.
  • M. Chinchilla, S. Arnaltes, and J. C. Burgos, Control of Permanent-Magnet Generators Applied to
  • Connected to the Grid, IEEE Transactions on Energy Conversion, 21: 130-135 (2006). Systems 8.
  • A.D. Hansen and G. Michalke, Multi-pole Permanent Magnet Synchronous Generator Wind Turbines' Grid Support Capability in Uninterrupted Operation During Grid Faults, IET Renewable Power Generation, 3: 333-348 (2009). 9.
  • Hua Geng, Dewei Xu, Stability Analysis and Improvements for Variable-Speed Multi pole Permanent Magnet Synchronous Generator-Based Wind
  • Transactions on Sustainable Energy,2: 459-467 (2011). System,
  • IEEE Kyoung-Jin Ko, Seok-Myeong Jang, Ji-Hoon Park, Han-Wook
  • Electromagnetic Performance Analysis of Wind Power Generator With Outer Permanent Magnet Rotor Based on Turbine Characteristics Variation Over Nominal Wind Speed, IEEE Transactions on Magnetics, 47: 3292-3295 (2011).
  • You, Wei Qiao ; Liyan Qu ; Harley, R.G., Control of IPM Synchronous Generator for Maximum Wind Power
  • Saturation, 45: 1095-1105 (2009).
  • Magnetic 12. Mauro Andriollo, Giulio Bettanini, Giovanni Martinelli, Augusto Morini, Andrea Tortella, Analysis of Double Star Permanent Magnetic Synchronous Generator by a General Decoupled d- q
  • Applications, 45 (4):1416-1424 (2009). on
  • Industry double-star
  • Applications, 8(2):39-49 (2014).
  • Shinji Kato, Yoshitaka Inui, Masakazu Michihira, Akira Tsuyoshi, A Low-Cost Wind Generator System with a Permanent Magnet Synchronous Generator and Diode Rectifiers, IEEE International Symposium on Industrial Electronics (ISIE), 1063 – 1068 (2011).
  • Shinji Kato, Masakazu Michihira, A Comparative Study on Power Generation Characteristics of Permanent Magnet Synchronous Generators, International Power Electronic Conference, 1499- 1505 (2010).