Spectrophotometric determination of the acidity dissociation constants of symmetric Schiff base derivatives

In this study, the acidity constants of series symmetric Schiff base derivatives have been determined using the UV-visible spectrophotometric method at a temperature of 25(±0.1) °C. The deprotonated acidity constants (pKa) have been found to be associated with the deprotonation of phenolate oxygen. The first and the second protonated acidity constants (pKa1 and pKa2) have been found to cause the protonation of the imine nitrogen atom for all molecules. The deprotonated acidity constants (pKa) were found for molecules 5 (9.088), 8 (9.848), 6 (10.243), 2 (10.2569), 3 (10.297), 1 (10.587), 7 (10.692) and 4 (10.804). The first protonation (pKa1) was found for molecules 2 (3.432), 5 (4.207), 8 (4.612), 7 (4.758), 4 (4.995), 1 (5.288), 6 (5.606) and 3 (6.452). The second protonation (pKa2) was found for molecules 2 (-5.384), 8 (-5.165), 5 (-5.028), 7 (-4.775), 4 (-4.518), 1 (-4.111), 6 (-3.866) and 3 (-3.212).

___

  • Calligaris, M., Randaccio, L., In Comprehensive Coordination Chemistry; Wilkinson, G., Ed.; Pergamon: London,Vol. 2, p 715, (1987).
  • Jia, H.P., Li, W., Ju, Z.F., Zhang, J., “Synthesis, Structure, and Magnetic Properties of a Novel Mixed-Bridged Heterometal Tetranuclear Complex [Mn2Ni2(MeOSalen)2(l1,1-N3)2(N3)2]”,
  • Chem. Commun., 10: 397-400 (2007).
  • Inorg. [3] Cohen, M.D., Schmidt, G.M.J., Flavian, S., “Topochemistry. VI. Experiments on Photochromy and Thermochromy of Crystalline Anils of Salicylaldehydes”, J. Chem. Soc., 2041-2051 (1964).
  • Lahav, M., Schmidt, G.M.J., “Tophochemistry. XXIII. The Solidstate Photochemistry at 25 Deg of Some Muconic Acid Derivatives”, J. Chem. Soc. B, 312-317, (1967).
  • Hadjoudis, E., Vitterakis, M., Moustakali-Mavridis, I., “Photochromism and Thermochromism of Schiff Bases in the Solid and in Rigid Glasses”, Tetrahedron, 43: 1345-1360 (1987).
  • Kaya, I., Yıldırım, M., Avcı, A., “Synthesis and Characterization of Fluorescent Polyphenol Species Derived From Methyl Substituted Aminopyridine Based Schiff Bases: The Effect of Substituent Position on Optical, Electrical, Electrochemical, and Fluorescence Properties”, Synth. Met., 160: 911-920 (2010).
  • Ramakrishna, D., Bhat, B.R., Karvembu, R., “Catalytic Oxidation of Alcohols by Nickel (II) Schiff
  • Triphenylphosphine in Ionic Liquid: an Attempt towards Oxidation
  • Commun., 11: 498-501 (2010).
  • Containing Process”,
  • Catal. [8] Soltani, N., Behpour, M., Ghoreish
  • i, S. M., Naeimi H., “Corrosion Inhibition of Mild Steel in Hydrochloric Acid Solution by Some Double Schiff Bases”, Corr. Sci., 52: 1351-1361 (2010).
  • Sabaa, M.W., Mohamed, R.R., Oraby, E.H., “Vanillin–Schiff’s Bases as Organic Thermal Stabilizers and Co-stabilizers for Rigid Poly(vinyl chloride)”, Europ. Poly. J., 45: 3072-3080 (2009). [10]
  • Chakraborty, A., Kumar, P., Ghosh, K., Roy, P., “Evaluation of a Schiff Base Copper Complex Compound as Potent Anticancer Molecule with Multiple Targets of Action”, Europ. J. Pharm., 647: 1-12 (2010).
  • Kamel, M. M., Ali, H. I., Anwar, M.M., Mohamed, N.A. Soliman, A.M., “Synthesis, Antitumor Activity and
  • Sulfonamide-Schiff's Benzothiazinones
  • Derivatives”, Europ. J. Medic. Chem., 45: 572-580 (2010). Study of Novel Bases,
  • Thiazolidinones, and Their c-nucleoside [12]
  • Roswadowski, Z., Majewski, E., Dziembowska, T., Hansen, P.E., “Deuterium Isotope Effects On 13C Chemical
  • Hydrogenbonded Schiffs Bases”, J. Chem. Soc. Perkin Trans., 2: 2809 (1999).
  • Intramolecularly Zgierski,
  • Photochromism of N-salycylidene-R-benzylamine”, J. Chem. Phys., 115: 8351 (2001). Study of [14]
  • Filarowski, A., Koll, A., Glowiak, T.,Majewski, E., Dziembowska, T., “Proton-transfer Reaction in N- methyl-2-hydroxy Schiff Bases”, Ber. Bunsen-Ges. Phys. Chem., 97: 393 (1993). [15] Koll, Dziembowska,
  • Conformation of Schiff Bases with Intramolecular Hydrogen Bonds”, J. Mol. Struct., 552: 193-204 (2000). Jagodzinska, Moments and [16]
  • Gilli, P., Ferretti, V., Bertolasi, V., Gilli, G., A Novel Approach to Hydrogen Bonding Theory In Advances in Molecular Structure Research, Hargittai, M., Hargittai, I., Eds.; JAI Press: Greenwich, CT, Vol. 2, p 667 (1996). [17]
  • Theoretical Investigation”, J. Pharm. Biomed. Anal., 15: 1667–1678 (1997). and [19]
  • Frey, P.A., Kokesh. F.O., Wcstheimer, F.H., “A Reporter Group at the Active Site of Acetoacetate Decarboxylase
  • Nitrophenol”, J. Am. Chem. Soc., 93: 7266-7270 (1971). Constant of the [20]
  • Türkoğlu, G., Berber H., Dal, H., Öğretir, C., “Synthesis,
  • theoretical study of some new Schiff base derivatives”, Spectroc. Acta Part A., 79, 1573– 1583 (2011). tautomerism and [21]
  • Türkoğlu, G., Bazı Difenolik Schiff Bazlarının Sentezi ve Yapılarının Aydınlatılması, Anadolu Üniversitesi, Yüksek Lisans Tezi, Kimya Anabilim Dalı, Eskişehir, (2007). [22]
  • Albert, A., Serjeant, E.P., The Determination of Ionisation Constants, Chapman and Hall London, U.K., (1971). [23]
  • Wiberg, B.K., Physical Organic Chemistry, Wiley: New York, (1963). [24]
  • Hammett, L.P., Deyrup, A.J., “A Series of Simple Basic Indicators. I. The Acidity Functions of Mixtures of Sulfuric and Perchloric Acids With Water”, J. Am. Chem. Soc., 54(7): 2721-2739 (1932). [25]
  • Jorgenson, M.J., Hartter, D.R., “A Critical Re- evaluation of the Hammett Acidity Function at Moderate and High Acid Concentrations of Sulfuricacid New Ho Values Based Solely on a Set of Primary Aniline Indicators”, J. Am. Chem. Soc., 85: 878-883 (1963). [26]
  • Johnson, C.D., Katritzky, A.R., Shapiro, S., “The protonation of Aromatic Carbonyl Compounds”, J. Am. Chem. Soc., 9: 6453-6457 (1968). [27]
  • Cookson, R.F., “The Determination of Acidity Constants”, Chem. Rev., 74: 1 (1974). [28]
  • Bowden, K., “Acidity Functions for Strongly Basic Solutions”, Chem. Rev., 66: 2 (1966). [29]
  • Perrin, D.D., Buffers for pH and Metal Ion Control; Chapman and Hall: London, U.K., (1971). [30]
  • Deno, N.C., Jaruzelski, J.J. “Carbonium ions. I. An acidity Function (Co) Derived from Arylcarbonium Ion Equilibriums”, J. Am. Chem. Soc., 77: 3044- 3051 (1955). [31]
  • Orloft, M.K., Fitts, D.D., “Semiempirical S.C.F.- L.C.A.O.-M.O. Treatment of Furan”, J. Chem. Phys., 38: 2334-2338 (1963). [32]
  • Yates, K., Stevens, J.B., Katritzky, A.R., “The Iionization Behavior of Amides in Concentrated Sulfuric Acids. I. A New Acidity Function Based on a Set of Primary Amide Indicators”, Can. J. Chem., 42: 1957-1970 (1964). [33]
  • Arnett, E.M., Mach, G.W., “Solvent Effects in Organic Chemistry. IV. The Failure of Tertiary Aromatic Amines as Hammett Bases“, J. Am. Chem. Soc., 86: 2671-2677 (1964). [34]
  • Yates, K., McClelland, R.A., “Mechanisms of ester hydrolysis in aqueous sulfuric acids “, J. Am. Chem. Soc., 89(11): 2686-2692 (1967). [35]
  • Schawarzenbach, G., Sulzberger, R., “The Alkalinity of Strong Solutionsof the Alkali Hydroxides”, Helv. Chim. Acta, 27: 348-362 (1944). [36]
  • Rochester, C.H., Acidity Functions, Academic Press: London, (1970).
  • Jones, J.R., The Ionization of Carbon Acids, Academic Press: New York, (1973). [38]
  • Özkütük, M., Öğretir, C., Arslan, T., Kandemirli, F., Köksoy, B., “An Experimental Study On Acid Dissociation Constants of Some Novel İsatin Thiosemicarbazone Derivatives”, J. Chem. Eng. Data, 55: 2714–2718 (2010). [39]
  • Öğretir, C., Berber, H., Asutay, O., “Spectroscopic Determination of Acid Dissociation Constants of Some Imidazole Derivatives”, J. Chem. Eng. Data, 46: 1540–1543 (2001).
  • Öğretir, C., Dal, H.; Berber, H., Taktak, F.F., “Spectroscopic Determination of Acid Dissociation Constants of Some Pyridyl Shiff Bases”, J. Chem. Eng. Data, 51: 46–50 (2006). [41]
  • Berber, H., Öğretir, C., Sev Lekesiz, E.Ç., Ermis, E., “Spectroscopic Determination of Acidity Constants of Some Monoazo Resorcinol Derivatives”, J. Chem. Eng. Data, 53: 1049–1055 (2008). [42]
  • Gülseven Sıdır, Y., Sıdır, İ., Berber H., Taşal, E., Öğretir, C., “Spectroscopic Determination of Acid Dissociation Constants of Some Novel Drug Precursor 6-Acylbenzothiazolon Derivatives”, J. Chem. Eng. Data, 55: 4752–4756 (2010). [43]
  • Taktak, F.F., Berber, H., Dal, H., Öğretir, C., “Spectroscopic
  • Dissociation Constants of Some 2-Hydroxy Schiff Base Derivatives”, J. Chem. Eng. Data, 56: 2084– 2089 (2011). of the Acid [44] Gülseven
  • “Spectroscopic Determination of Acid Dissociation Constants of N-Substituted-6-acylbenzothiazolone Derivatives”, J. Phys. Chem. A, 115: 5112–5117 Öğretir, C., Görgün, K., Özkütük, M., Sakarya, H.C., “Determination and evaluation of acid dissociation constants of some novel benzothiazole Schiff bases and their reduced analogs by spectroscopy”, ARKIVOC, vii: 197-209 (2009). [46] Öğretir,
  • “Spectroscopic Determination of Acid Dissociation Constants of Some Biologically Active 6-Phenyl- 4,5-dihydro-3(2H)-pyridazinone Derivatives”, J. Chem. Eng. Data, 47: 1396–1400 (2002). Ş., [47]
  • Hansch, C., Leo, A., Taft, R.W., “A Survey of Hammett Substituent Constants and Resonance and Field Parameters”, Chem. Rev., 97: 165-195 (199l). [48]
  • Ang, K., Tan, S., “Ionization Constants of Some Hydroxy-Pyrones at 25°C”, J. Chem. Soc. Perkin Trans., 2: 1525-1526 (1979).
  • Dean, J.A., Edited by, Lange's Handbook of Chemistry, (15th Edition); McGraw-Hill Mar Vol: 2, (2001).