On Cauchy Numbers and Their Generalizations
This paper is concerned with both kinds of the Cauchy numbers and their generalizations. Taking into account Mellin derivative, we relate p-Cauchy numbers of the second kind with shifted Cauchy numbers of the first kind, which yields new explicit formulas for the Cauchy numbers of the both kind. We introduce a generalization of the Cauchy numbers and investigate several properties, including recurrence relations, convolution identities and generating functions. In particular, these results give rise to new identities for Cauchy numbers.
___
- [1] Comtet, L., Advanced Combinatorics, Reidel, Dordrecht, (1974).
- [2] Agoh, T. and Dilcher, K., “Recurrence relations for Nörlund numbers and Bernoulli numbers of the second kind”, Fibonacci Q., 48: 4-12, (2010).
- [3] Young, P.T., “A 2-adic formula for Bernoulli numbers of the second kind and for the Nörlund numbers”, J. Number Theory, 128: 2951-2962, (2008).
- [4] Nörlund, N. E.,Vorlesungen Äuber Direrenzenrechnung, Springer-Verlag, Berlin, (1924).
- [5] Cenkci, M. and Young, P.T., “Generalizations of poly-Bernoulli and poly-Cauchy numbers”, Eur. J. Math., 1:799-828, (2015).
- [6] Komatsu, T., “Hypergeometric Cauchy numbers”, Int. J. Number Theory, 9: 545-560, (2013).
- [7] Komatsu, T., Laohakosol,V., and Liptai, K., “A generalization of poly-Cauchy numbers and their properties”, Abstr. Appl. Anal., 2013: Article ID 179841, (2013).
- [8] Komatsu, T., “Poly-Cauchy numbers”, Kyushu J. Math., 67: 143-153, (2013).
- [9] Komatsu, T., “Poly-Cauchy numbers with a q parameter”, Raman. J., 31: 353-371, (2013).
- [10] Komatsu, T., “Incomplete poly-Cauchy numbers”, Monatsh. Math., 180: 271-288, (2016).
- [11] Komatsu, T., Mezö, I. and Szalay, L., “Incomplete Cauchy numbers”, Acta Math. Hungar., 149: 306-323, (2016).
- [12] Komatsu, T. and Young, P.T., “Generalized Stirling numbers with poly-Bernoulli and poly-Cauchy numbers”, Int. J. Number Theory, 14(05): 1211-1222, (2018).
- [13] Boyadzhiev, K.N., “Polyexponentials”, available from: http://arxiv.org/pdf/0710.1332v1.pdf.
- [14] Komatsu, T. and Szalay, L., “Shifted poly-Cauchy numbers”, Lith. Math. J., 54: 166-181, (2014).
- [15] Rahmani, M., “On p-Cauchy numbers”, Filomat, 30(10): 2731-2742, (2016).
- [16] Lah, I., “A new kind of numbers and its application in the actuarial mathematics”, Bol. Inst. Actuár. Port., 9: 7-15, (1954).
- [17] Rahmani, M., “Generalized Stirling transform”, Miskolc Math. Notes, 15: 677-690, (2014).
- [18] Komatsu, T., “Sums of products of Cauchy numbers, including poly-Cauchy numbers”, J. Discrete Math., 2013: Article ID373927, (2013).
- [19] Howard, F. T., Nörlund’s number B_n^n, Applications of Fibonacci Numbers, Vol. 5, Kluwer Acad. Publ., Dordrecht, (1993).
- [20] Zhao, F.Z., “Sums of products of Cauchy numbers”, Discrete Mathematics, 309(12): 3830-3842, (2009).