Investigation of Structural, Electronic, Optic and Elastic Properties of Perovskite RbGeCl3 Crystal: A First Principles Study

Some physical properties of RbGeCl3 crystal are investigated with ABINIT computer program within the generalized gradient approximation (GGA) and the local density approximation (LDA), using density functional theory (DFT). We studied the geometry optimization, electronic band structure, electron density of states, optical properties such as the dielectric functions, reflectivity, refractive index, extinction coefficients, energy-loss functions for volume, the effective number of valence electrons per unit cell and elastic properties of RbGeCl3. The calculated electronic band structure shows that the RbGeCl3 has a direct band gap and this compound is a semiconducting material with a wide bandgap.

___

  • [1] Zhang W, Eperon GE, Snaith HJ: Metal halide perovskites for energy applications. Nat. Energy. 2016;1:16048.
  • [2] Stoumpos CC, Kanatzidis MG: Halide Perovskites: Poor Man's High‐Performance Semiconductors. Adv. Mater. 2016; 28:5778-5793.
  • [3] Chen Q, De Marco N, Yang Y, Song TB, Chen CC, Zhao H, Hong Z, Zhou H, Yang Y: Under the spotlight: The organic–inorganic hybrid halide perovskite for optoelectronic applications. Nano Today. 2015;10:355-396.
  • [4] Chen S and Shi G: Two‐Dimensional Materials for Halide Perovskite‐Based Optoelectronic Devices. Adv. Mater. 2017;29:1605448.
  • [5] McMurdie HF, de Groot J, Morris M and Swanson HE: Crystallography and preparation of some ABCl3 compounds. J. of Research of the National Bureau of Standards-A. Physics and Chemistry 1969;73A:621-626.
  • [6] Kumawat NK, Tripathi MN, Waghmare U, Kabra D: Structural, optical, and electronic properties of wide bandgap perovskites: experimental and theoretical Investigations. The Journal of Physical Chemistry 2016;120:3917-3923.
  • [7] Zhao Y, Zhu K: Organic–inorganic hybrid lead halide perovskites for optoelectronic and electronic applications. Chem. Soc. Rev. 2016;45:655-689.
  • [8] Roghabadi FA, Ahmadi V, Aghmiuni KO: Organic–Inorganic Halide Perovskite Formation: In Situ Dissociation of Cation Halide and Metal Halide Complexes during Crystal Formation. Journal of Physical Chemistry C 2017;121:13532-13538.
  • [9] Veldhuis SA, Boix PP, Yantara N, Li M, Sum TC, Mathews N, Mhaisalkar SG: Perovskite materials for light‐emitting diodes and lasers. Adv. Mater. 2016;28:6804-6834.
  • [10] Tang LC, Liu LQ, Chang YC, Yao JH, Huang JY, and Chang CS: Characterization of Nonlinear Optical Properties of Crystal RbGeCl3· x (H2O) in Infrared Region. Japanese Journal of Applied Physics 2009;48:082001(1-7).
  • [11] Giordmaine JA and Miller RC: Tunable Coherent Parametric Oscillation in LiNbO3 at Optical Frequencies. Phys. Rev. Lett. 1965;14:973-975.
  • [12] Dmitriev VG, Gurzadyan GG, and Nikogosyan DN: Handbook of Nonlinear Optical Crystals. Berlin:Springer; 1999.
  • [13] Messer D, Die Kristallstruktur yon RbGeCl3/The Crystal Structure of RbGeCl3. Z. Naturforsch 1978;33b:366-369.
  • [14] Gonze X, Beuken JM, Caracas R, Detraux F, Fuchs M, Rignanese GM, Sindie L, Verstrate M, Zerah G, Jollet F, Torrent M, Roy A, Mikami M, Ghosez P, Raty JY and Allan DC: First-principles computation of material properties: the ABINIT software project . Computational Materials Science 2002;25:478-492.
  • [15] Fuchs M and Scheffler M: Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems using density-functional theory. Comput. Phys. Commun. 1999;119:67-98.
  • [16] Troullier N and Martins JL: Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 1991;43:1993-2006.
  • [17] Payne MC, Teter MP, Allan DC, Arias TA and Joannopoulos JD: Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev. Mod. Phys. 1992;64:1045-1098.
  • [18] Khon W and Sham LJ: Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965;140:A1133-A1138.
  • [19] Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ and Fiolhais C: Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992;46:6671-6687.
  • [20] Perdew JP, Burke K and Ernzerhof M: Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 1996;77:3865-3868.
  • [21] Monkhorst JH and Pack JD: Special points for Brillouin-zone integrations. Phys. Rev. B 1976;13:5188-5192.