CARRIER-BASED PWM TECHNIQUES FOR MULTI-LEVEL INVERTERS: A COMPREHENSIVE PERFORMANCE STUDY

CARRIER-BASED PWM TECHNIQUES FOR MULTI-LEVEL INVERTERS: A COMPREHENSIVE PERFORMANCE STUDY

This work deals with a carrier based sinusoidal pulse width modulation strategies for three phase seven level cascaded H-bridge multilevel inverter. Sawtooth and triangular carriers are presented with the different reference signals i.e. sinusoidal reference, third harmonic injected sinusoidal reference and trapezoidal reference. Various modulation strategies like Phase Disposition PWM, Phase Opposition Disposition PWM and Alternate-Phase Opposition Disposition PWM are implemented for different reference signals.                 The various arrangements of sawtooth and triangular carriers are implemented based on the three different carrier arrangement techniques such as constant frequency, variable frequency and carrier overlapping. The comparison table of %THD content has also been included for different modulation index of each reference signal with various modulation strategies based on the different arrangements of the carriers. The work has been carried out and tested in MATLAB/SIMULINK platform and %THD present in Phase Voltage and Line Voltage for three different reference signals has also been studied as well.

___

  • [1] Mahato, B., Thakura, P. R., Jana, K. C., “Hardware Design and Implementation of Unity Power Factor Rectifiers using Microcontrollers,” In 2014 IEEE 6th India International Conference on Power Electronics (IICPE): 1–5, (2014).
  • [2] Jha, K. K., Mahato, B., Prakash, P., “Active power factor correction for rectifier using micro-controller,” In 2016 3rd International Conference on Recent Advances in Information Technology (RAIT): 331–336, (2016).
  • [3] Baker, R. H. and Bannister, L. H., Electric Power Converter, U.S. Patent, 3 867 643, (1975).
  • [4] Rodriguez, J., Lai, J. S., Peng, F. Z., “Multilevel inverters: A survey of topologies, controls, and applications,” IEEE Trans. Ind. Electron., 49(4): 724–738, (2002).
  • [5] M. Liserre, T. Sauter, J. Y. Hung, “Future energy systems: Integrating renewable energy into the smart power grid through industrial electronics,” IEEE Ind Electron Mag. 4(1): 18–37, (2010).
  • [6] Abu-Rub, H., Malinowski, M., Al-Haddad, K., “Power electronics for renewable energy systems, transportation and industrial applications,” John Wiley & Sons, (2014).
  • [7] Rodríguez, J., Lai, J. S., Peng, F. Z., “Multilevel inverters: A survey of topologies, controls, and applications,” IEEE Trans Ind. Electron., 49(4): 724–38, (2002).
  • [8] Rodriguez, J. L., Franquelo, G., Kouro, S., Leon, J. I., Portillo, R. C., Prats, M. A. M. and M. A. Perez, “Multilevel converters: An enabling technology for high-power applications,” Proceedings of the IEEE, 97(11): 1786-1817, (2009).
  • [9] Rodriguez, J., Bernet, S., Steimer, P. K., I. E. Lizama, “A survey on neutral-point-clamped inverters,” IEEE Trans. Ind. Electron., 57(7): 2219–30, (2010).
  • [10] Malinowski, M., Gopakumar, K., Rodriguez, J., Perez, M. A., “A survey on Cascaded Multilevel Inverters, IEEE Trans. Ind. Electron., 57(7): 2197–2206, (2010).
  • [11] Jing, H. and Corzine, K. A., “Extended operation of flying capacitor multilevel inverters,” IEEE Trans. Power Electron., 21(1): 140–7, (2006).
  • [12] Lai, J. S. and Peng, F. Z., “Multilevel Converters - A new breed of power converters,” IEEE Trans. Ind. Applicat., 32(3): 509–517, (1996).
  • [13] Franquelo, L. G., Rodriguez, J., Leon, J. I., Kouro, S., Portillo, R., Prats, M. A. M., “The age of multilevel converters arrives,” IEEE Ind. Electron. Mag., 2(2): 28–39, (2008).
  • [14] Lezana, P. and Ortiz, G., “Extended operation of cascaded multi-cell converters under fault condition,” IEEE Trans. Ind. Electron., 56(7): 2697–2703, (2009).
  • [15] Khoucha, F., Lagoun, S. M., Marouani, K., Kheloui, A., Benbouzid, M. E. H., “Hybrid Cascaded H-Bridge Multilevel-Inverter Induction-Motor-Drive Direct Torque Control for Automotive Applications,” IEEE Trans. Ind. Electron., 57(3): 892–9, (2010).
  • [16] Babu, NN. V. S., Fernandes, B. G.,“Cascaded two-level inverter-based multilevel STATCOM for high-power applications,” IEEE Trans. Power Deliv., 29(3): 993–1001, (2014).
  • [17] Zheng, Z., Wang, K., Xu, L., Li, Y., “A hybrid cascaded multilevel converter for battery energy management applied in electric vehicles,” IEEE Trans. Power Electron., 29(7): 3537–46, (2014).
  • [18] Mahato, B., Raushan, R., Jana, K. C., “Comparative Study of Asymmetrical Configuration of Multilevel Inverter for Different Levels,” In 2016 3rd International Conference on Recent Advances in Information Technology (RAIT): 300–303, (2016).
  • [19] McGrath, B. P. and Holmes, D. G., “Multicarrier PWM strategies for multilevel inverters,” IEEE Trans. Ind. Electron., 49(2): 858–867, (2002).
  • [20] Naderi, R. and Rahmati, A., “Phase-shifted carrier PWM technique for general cascaded inverters,” IEEE Trans. Power Electron., 23(3): 1257-1268, (2008).
  • [21] Jana, K. C., Biswas, S. K., Chowdhury, S. K., “Performance evaluation of a simple and general space vector pulse-width modulation-based M-level inverter including over-modulation operation,” IET Power Electron., 6(4): 809–817, (2013).
  • [22] Carrara, G. S., M. Gardella., Salutari, R., Sciutto, G., “A new multilevel PWM method: A theoretical analysis,” IEEE Trans. Power Electron., 7(3): 497–505, (1992).
  • [23] Black, H. S., Modulation Theory. New York: Van Nostrand, (1953).
  • [24] Bowes, S. R., “New sinusoidal pulse-width modulated inverter,” Proc. Inst. Elect. Eng., 122(11): 1279–1285, (1975).
  • [25] Tolbert, L. M. and Habetler, T. G., “Novel Multilevel Inverter Carrier-Based PWM Method, ” IEEE Trans. on Ind. Applicat., 35(5): 1098-1107, (1999).
  • [26] Kumar, C., Mahato, B., Raushan, R., Jana, K. C., Maity, T., “Comprehensive study of various configurations of three-phase Multilevel inverter for different levels,” In 2016 3rd International Conference on Recent Advances in Information Technology (RAIT):310-315, (2016).