The Dependence of The Nickel Concentration of ZnO Thin Films for Gas Sensors Applications

Undoped ZnO and Ni-doped ZnO thin films were synthesized on glass substrate using the SILAR method. The aim of this work is the analysis of NO gases using Zn1-xNixO sensors concentrations in the range from 100 ppb to 25 ppm. The gas sensing properties of the films for low NO gas concentrations were carefully investigated within a temperature range from 35 to 135ºC. The gas measurement results revealed that the doping process was strongly affected by the response of Ni-doped ZnO thin films. The Zn0.75Ni0.25O sensor exhibited higher sensitivity, faster response, and recovery times for NO gas at low (100 ppb) concentration. It was concluded that the Ni dopant enhanced the properties of ZnO films for gas sensor applications by changing the microstructure, morphology, and bandgap of ZnO material.

___

  • Akaltun, Y., & Çayır, T. (2015). Fabrication and characterization of NiO thin films prepared by SILAR method. Journal of Alloys and Compounds, 625, 144-148. doi:10.1016/j.jallcom.2014.10.194
  • Chen, Z., Lin, Z., Xu, M., Hong, Y., Li, N., Fu, P., & Chen, Z., (2016). Effect of gas sensing properties by Sn-Rh codoped ZnO nanosheets. Electronic Materials Letters, 12(3), 343-349. doi:10.1007/s13391-016-6053-x
  • Cheng, C., Xu, G., Zhang, H., & Luo, Y. (2008). Hydrothermal synthesis Ni-doped ZnO nanorods with room-temperature ferromagnetism. Materials Letters, 62(10-11), 1617-1620. doi:10.1016/j.matlet.2007.09.035
  • Çorlu, T., Karaduman, I., Yıldırım, M. A., Ateş, A., & Acar, S. (2017). Effect of Doping Materials on the Low-Level NO Gas Sensing Properties of ZnO Thin Films. Journal of Electronic Materials, 46(7), 3995-4002. doi:10.1007/s11664-017-5503-z
  • Çorlu, T., Karaduman, I., Galioglu, S., Akata, B., Yıldırım, M. A., Ates, A., & Acar, S. (2018). Low level NO gas sensing properties of Cu doped ZnO thin films prepared by SILAR method. Materials Letters, 212, 292-295. doi:10.1016/j.matlet.2017.10.121
  • Ganesh Sankar, R., Durgadevi, E., Navaneethan, M., Patil, V. L., Ponnusamy, S., Muthamizhchelvan, C., Kawasaki, S., Patil, P. S., & Hayakawa, Y. (2017). Controlled synthesis of Ni-doped ZnO hexagonal microdiscs and their gas sensing properties at low temperature. Chemical Physics Letters, 689, 92-99. doi:10.1016/j.cplett.2017.09.057
  • Gao, H., Wei, D., Lin, P., Liu, C., Sun, P., Shimanoe, K., Yamazoe, N., & Lu, G. (2017). The design of excellent xylene gas sensor using Sn-doped NiO hierarchical nanostructure. Sensors and Actuators B: Chemical, 253, 1152-1162. doi:10.1016/j.snb.2017.06.177. doi:10.1016/j.snb.2017.06.177
  • Gu, C., Guan, W., Liu, X., Gao, L., Wang, L., Shim J-J., & Huang J., (2017). Controlled synthesis of porous Ni-doped SnO2 microstructures and their enhanced gas sensing properties. Journal of Alloys and Compounds, 692, 855-864. doi:10.1016/j.jallcom.2016.09.103
  • Karaduman, I., Çorlu, T., Yıldırım, M. A., Ateş, A., & Acar, S. (2017). Hydrogen Gas Sensing Characteristics of Nanostructured NiO Thin Films Synthesized by SILAR Method. Journal of Electronic Materials, 46(7), 4017-4023. doi:10.1007/s11664-017-5400-5
  • Karaduman Er, I. (2021). Development of ZnO sensors via succession ionic layer adsorption and reaction (SILAR) method for ppb level NO gas sensing. Research on Engineering Structures & Materials. doi:10.17515/resm2020.212ma0901
  • Keskenler, E. F., Doğan, S., Turgut, G., & Gürbulak, B., (2012). Evaluation of Structural and Optical Properties of Mn-Doped ZnO Thin Films Synthesized by Sol-Gel Technique. Metallurgical and Materials Transactions A, 43(13), 5088-5095. doi:10.1007/s11661-012-1365-4
  • Kumar Rana, A., Bankar, P., Kumar, Y., More, M. A., Late, D. J., & Shirage, P. M. (2016). Synthesis of Ni doped ZnO nanostructures by low temperature wet chemical method and their enhanced field emission properties. RSC Advances, 6(106), 104318-104324. doi:10.1039/C6RA21190A
  • Moon, H. G., Jang, H. W., Kim, J-S., Park, H.-H., & Yoon S-J. (2010). Size effects in the CO sensing properties of nanostructured TiO2 thin films fabricated by colloidal templating. Electronic Materials Letters, 6(1), 31-34. doi:10.3365/eml.2010.03.031
  • Lin, Z., Li, N., Chen, Z., & Fu, P. (2017). The effect of Ni doping concentration on the gas sensing properties of Ni doped SnO2. Sensors and Actuators B: Chemical, 239, 501-510. doi:10.1016/j.snb.2016.08.053
  • Nwanya, A. C., Deshmukh, P. R., Osuji, R. U., Maaza, M., Lokhande, C. D., & Ezema F. I. (2015). Synthesis, characterization and gas-sensing properties of SILAR deposited ZnO-CdO nano-composite thin film. Sensors and Actuators B: Chemical, 206, 671-678. doi:10.1016/j.snb.2014.09.111
  • Rambu, A. P., Ursu, L., Iftimie, N., Nica, V., Dobromir, M., & Iacomi, F. (2013). Study on Ni-doped ZnO films as gas sensors. Applied Surface Science, 280, 598-604. doi:10.1016/j.apsusc.2013.05.033
  • Salunkhe, R. R., & Lokhande, C. D. (2008). Effect of film thickness on liquefied petroleum gas (LPG) sensing properties of SILAR deposited CdO thin films. Sensors and Actuators B: Chemical, 129(1), 345-351. doi:10.1016/j.snb.2007.08.035
  • Shen, J., Guo, S., Chen, C., Sun, L., Wen, S., Chen, Y., & Ruan, S. (2017). Synthesis of Ni-doped α-MoO3 nanolamella and their improved gas sensing properties. Sensors and Actuators B: Chemical, 252, 757-763. doi:10.1016/j.snb.2017.06.040
  • Sun, G-J., Kyung Lee, J., Lee, W. I., Prakash Dwivedi, R., Lee, C., & Ko, T. (2017). Ethanol sensing properties and dominant sensing mechanism of NiO-decorated SnO2 nanorod sensors. Electronic Materials Letters, 13(3), 260-269. doi:10.1007/s13391-017-1719-6
  • Wang, B., Yuan, Y., Wang, C., Huang, J., Li, X., Zhang, H., Xia, F., & Xiao, J. (2017). Effects of Ni addition on the response of La2CuO4 sensing electrode for NO sensor. Sensors and Actuators B: Chemical, 252, 37-43. doi:10.1016/j.snb.2017.05.123
  • Wang, L., Zhou, T., Zhang, R., Lou, Z., Deng, J., & Zhang T., (2016). Comparison of toluene sensing performances of zinc stannate with different morphology-based gas sensors. Sensors and Actuators B: Chemical, 227, 448-455. doi:10.1016/j.snb.2015.12.097
  • Wang, X., Zhao, M., Liu, F., Jia, J., Li, X., & Cao, L. (2013). C2H2 gas sensor based on Ni-doped ZnO electrospun nanofibers. Ceramics International, 39(3), 2883-2887. doi:10.1016/j.ceramint.2012.09.062
  • Wang, Y., Wang, Y., Cao, J., Kong, F., Xia, H., Zhang, J., Zhu, B., Wan, S., & Wu, S. (2008). Low-temperature H2S sensors based on Ag-doped α-Fe2O3 nanoparticles. Sensors and Actuators B: Chemical, 131(1), 183-189. doi:10.1016/j.snb.2007.11.002
  • Yıldırım, M. A., Yıldırım, S. T., Cavanmirza, I., & Ateş, A. (2016). Chemically synthesis and characterization of MnS thin films by SILAR method. Chemical Physics Letters, 647, 73-78. doi:10.1016/j.cplett.2016.01.048