Effect of Post-Annealing Treatment on the Structural, Optical, and Electrical Properties of V2O5 Thin Films

Vanadium pentoxide (V2O5) thin films were prepared on microscope glass slides using the reactive DC magnetron sputtering technique at room temperature. Post annealing process was performed at atmospheric conditions in 480°C for 1 hour. To investigate the effect of post-annealing treatment, morphological and structural analyses were carried out by field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD), respectively. Additionally optical characterization was completed using UV-Vis spectrophotometer. Current-voltage (I-V) and capacitance-voltage (C-V) measurements were performed to examine electrical properties. XRD revealed the drastic effect of post-annealing on the crystallization of amorphous V2O5 thin films. The amorphous as-deposited film structure transformed into the polycrystalline form after post-annealing treatment. FESEM images revealed a remarkable change in surface morphology from a smooth flat surface to a rough surface with the formation of V2O5 nanorods under the influence of post-annealing. Optical energy band gap was observed to decrease drastically. The significant changes in the structure and morphology of the thin films with post-annealing affected their electrical properties to a fair extent. While resistance increased, capacitance and dielectric permittivity of the films decreased with post-annealing treatment.

___

  • Ahmed, N. M., Sabah, F. A., Abdulgafour, H. I., Alsadig, A., Sulieman, A., & Alkhoaryef, M. (2019). The effect of post annealing temperature on grain size of indium-tin-oxide for optical and electrical properties improvement. Results in Physics, 13, 102159. doi:10.1016/j.rinp.2019.102159
  • Ba, C., Bah, S. T., D’Auteuil, M., Ashrit, P. V., & Vallée, R. (2013). Fabrication of high-quality VO2 thin films by ion-assisted dual ac magnetron sputtering. ACS Applied Materials and Interfaces, 5(23), 12520-12525. doi:10.1021/am403807u
  • Benmoussa, M., Outzourhit, A., Bennouna, A., & Ameziane, E. L. (2002). Electrochromism in sputtered V2O5 thin films: Structural and optical studies. Thin Solid Films, 405(1–2), 11–16. https://doi.org/10.1016/S0040-6090(01)01734-5
  • Béteille, F., & Livage, J. (1998). Optical Switching in VO2 Thin Films. Journal of Sol-Gel Science and Technology, 13(1-3), 915-921. doi:10.1023/a:1008679408509
  • Bowman, R. M., & Gregg, J. M. (1998). VO2 thin films: Growth and the effect of applied strain on their resistance. Journal of Materials Science: Materials in Electronics, 9(3), 187-191. doi:10.1023/A:1008822023407
  • Budaguan, B. G., Sherchenkov, A. A., Chernomordic, V. D., Biriukov, A. V., & Ljungberg, L. Y. (1998). A-Si:H/c-Si heterostructures prepared by 55 kHz glow discharge high-rate deposition technique. Journal of Non-Crystalline Solids, 227-230, Part 2, 1123-1126. doi:10.1016/S0022-3093(98)00289-0
  • Cho, C-R., Cho, S., Vadim, S., Jung, R., & Yoo, I. (2006). Current-induced metal-insulator transition in VOx thin film prepared by rapid-thermal-annealing. Thin Solid Films, 495(1-2), 375-379. doi:10.1016/j.tsf.2005.08.241
  • Hébert, C., Willinger, M., Su, D. S., Pongratz, P., Schattschneider, P., & Schlögl, R. (2002). Oxygen K-edge in vanadium oxides: Simulations and experiments. The European Physical Journal B - Condensed Matter and Complex Systems, 28(4), 407-414. doi:10.1140/epjb/e2002-00244-4
  • Hu, Y., Diao, X., Wang, C., Hao, W., & Wang, T. (2004). Effects of heat treatment on properties of ITO films prepared by rf magnetron sputtering. Vacuum, 75(2), 183-188. doi:10.1016/j.vacuum.2004.01.081
  • Karaduman Er, I. K., Çağırtekin, A. O., Artuç, M., & Acar, S. (2021). Synthesis of Al/HfO2/p-Si Schottky diodes and the investigation of their electrical and dielectric properties. Journal of Materials Science: Materials in Electronics, 32(2), 1677–1690. doi:10.1007/s10854-020-04937-9
  • Kim, H. K., You, H., Chiarello, R. P., Chang, H. L. M., Zhang, T. J., & Lam, D. J. (1993). Finite-size effect on the first-order metal-insulator transition in VO2 films grown by metal-organic chemical-vapor deposition. Physical Review B, 47(19), 12900-12907. doi:10.1103/PhysRevB.47.12900
  • Kiri, P., Warwick, M. E. A., Ridley, I., & Binions, R. (2011). Fluorine doped vanadium dioxide thin films for smart windows. Thin Solid Films, 520(4), 1363-1366. doi:10.1016/j.tsf.2011.01.401
  • Kumar, R. T. R., Karunagaran, B., Mangalaraj, D., Narayandass, S. K., Manoravi, P., & Joseph, M. (2004). Characteristics of amorphous VO2 thin films prepared by pulsed laser deposition. Journal of Materials Science, 39(8), 2869-2871. doi:10.1023/B:JMSC.0000021467.53474.e3
  • Kumar, N. S., Raman, M. S., Chandrasekaran, J., Priya, R., Chavali, M., & Suresh, R. (2016). Effect of post-growth annealing on the structural, optical and electrical properties of V2O5 nanorods and its fabrication, characterization of V2O5/p-Si junction diode. Materials Science in Semiconductor Processing, 41, 497-507. doi:10.1016/j.mssp.2015.08.020
  • Lamsal, C., & Ravindra, N. M. (2013). Optical properties of vanadium oxides-an analysis. Journal of Materials Science, 48(18), 6341-6351. doi:10.1007/s10853-013-7433-3
  • Luo, Z., Zhou, X., Yan, D., Wang, D., Li, Z., Yang, C., & Jiang, Y. (2014). Effects of thickness on the nanocrystalline structure and semiconductor-metal transition characteristics of vanadium dioxide thin films. Thin Solid Films, 550, 227-232. doi:10.1016/j.tsf.2013.10.172
  • Mohamed, H. A. (2007). The effect of annealing and ZnO dopant on the optoelectronic properties of ITO thin films. Journal of Physics D: Applied Physics, 40(14), 4234-4240. doi:10.1088/0022-3727/40/14/019
  • Mohamed, H. A. (2009). Sintering process and annealing effect on some physical properties of V2O5 thin films. Optoelectronics and Advanced Materials - Rapid Communications, 3(7), 693-699.
  • Obstarczyk, A., Kaczmarek, D., Mazur, M., Wojcieszak, D., Domaradzki, J., Kotwica, T., & Morgiel, J. (2019). The effect of post-process annealing on optical and electrical properties of mixed HfO2–TiO2 thin film coatings. Journal of Materials Science: Materials in Electronics, 30(7), 6358-6369. doi:10.1007/s10854-019-00938-5
  • Prześniak-Welenc, M., Łapiński, M., Lewandowski, T., Kościelska, B., Wicikowski, L., & Sadowski, W. (2015). The Influence of Thermal Conditions on V2O5 Nanostructures Prepared by Sol-Gel Method. Journal of Nanomaterials, 2015(Special Issue), 418024. doi:10.1155/2015/418024
  • Rajendra Kumar, R. T., Karunagaran, B., Senthil Kumar, V., Jeyachandran, Y. L., Mangalaraj, D., & Narayandass, S. K. (2003). Structural properties of V2O5 thin films prepared by vacuum evaporation. Materials Science in Semiconductor Processing, 6(5–6), 543–546. doi: 10.1016/j.mssp.2003.08.017
  • Ramana, C. V., Smith, R. J., Hussain, O. M., & Julien, C. M. (2004). On the growth mechanism of pulsed-laser deposited vanadium oxide thin films. Materials Science and Engineering B, 111(2-3), 218-225. doi:10.1016/j.mseb.2004.04.017
  • Sengodan, R., Shekar, B. C., & Sathish, S. (2013). Morphology, structural and dielectric properties of vacuum evaporated V2O5 thin films. Physics Procedia, 49, 158-165. doi:10.1016/j.phpro.2013.10.022
  • Shimizu, K., Chinzei, I., Nishiyama, H., Kakimoto, S., Sugaya, S., Matsutani, W., & Satsuma, A. (2009). Doped-vanadium oxides as sensing materials for high temperature operative selective ammonia gas sensors. Sensors and Actuators B: Chemical, 141(2), 410-416. doi:10.1016/j.snb.2009.06.048
  • Thomas, B., & Jayalekshmi, S. (1989). Dielectric properties of vanadium pentoxide thin films in the audiofrequency range. Journal of Non-Crystalline Solids, 113(1), 65-72. doi:10.1016/0022-3093(89)90319-0
  • Van de Kerckhove, K., Mattelaer, F., Dendooven, J., & Detavernier, C. (2017). Molecular layer deposition of “vanadicone”, a vanadium-based hybrid material, as an electrode for lithium-ion batteries. Dalton Transactions, 46(14), 4542-4553. doi:10.1039/c7dt00374a
  • Vasanth Raj, D., Ponpandian, N., Mangalaraj, D., & Viswanathan, C. (2013). Effect of annealing and electrochemical properties of sol-gel dip coated nanocrystalline V2O5 thin films. Materials Science in Semiconductor Processing, 16(2), 256-262. doi:10.1016/j.mssp.2012.11.001
  • Wang, N., Magdassi, S., Mandler, D., & Long, Y. (2013). Simple sol-gel process and one-step annealing of vanadium dioxide thin films: Synthesis and thermochromic properties. Thin Solid Films, 534, 594-598. doi:10.1016/j.tsf.2013.01.074
  • Xue-Jin, W., Chun-Jun, L., Kang-Ping, G., De-Hua, L., Yu-Xin, N., Shi-Oiu, Z., Feng, H., Wei-Wei Z., & Zheng-Wei, C. (2008). Surface oxidation of vanadium dioxide films prepared by radio frequency magnetron sputtering. Chinese Physics B, 17(9), 3512-3515. doi:10.1088/1674-1056/17/9/062
  • Vijayakumar, Y., Sayanna, R., Ramana Reddy, M. V. (2014). Annealing Effect on Structural, Optical and Electrical Properties of V2O5 Thin Films by Dip Coating. Asian Journal of Applied Sciences, 7(8) 753-760. doi:10.3923/ajaps.2014.753.760
  • Yan, W., Hu, M., Wang, D., & Li, C. (2015). Room temperature gas sensing properties of porous silicon/V2O5 nanorods composite. Applied Surface Science, 346, 216-222. doi:10.1016/j.apsusc.2015.01.020
  • Yelsani, V., Pothukanuri, N., Sontu, U. B., Yaragani, V., & Musku Venkata, R. R. (2019). Effect of annealing temperature on structural, morphological, optical and electrical properties of spray deposited V2O5 thin films. Materials Science (Medžiagotyra), 25(1), 3-6. doi:10.5755/j01.ms.25.1.18492
  • Zou, C. W., Yan, X. D., Han, J., Chen, R. Q., & Gao, W. (2009). Microstructures and optical properties of β-V2O5 nanorods prepared by magnetron sputtering. Journal of Physics D: Applied Physics, 42(14), 145402. doi:10.1088/0022-3727/42/14/145402
  • Zou, C. W., Yan, X. D., Patterson, D. A., Emanuelsson, E. A. C., Bian, J. M., & Gao, W. (2010). Temperature sensitive crystallization of V2O5: from amorphous film to β-V2O5 nanorods. CrystEngComm, 12(3), 691-693. doi:10.1039/b916614a