- Gupta, V., & Aral, A. (2010). Convergence of the q-analogue of Szász-beta operators. Applied Mathematics and Computation, 216(2), 374-380. doi:10.1016/j.amc.2010.01.018
- Gupta, V., & Karsli, H. (2012). Some approximation properties by q-Szász-Mirakyan-Baskakov-Stancu operators. Lobachevskii Journal of Mathematics, 33(2), 175-182. doi:10.1134/S1995080212020138
- Gupta, V. (2018). (p, q)-Szász-Mirakyan-Baskakov Operators. Complex Analysis and Operator Theory, 12, 17-25. doi:10.1007/s11785-015-0521-4
- Jackson, F. H. (1910). On q-Definite Integrals. The Quarterly Journal of Pure and Applied Mathematics, 41(15), 193-203.
- Kac, V. G., & Cheung, P. (2002). Quantum Calculus. Part of the Universitext book series, Springer-Verlag, New York. doi:10.1007/978-1-4613-0071-7
- Kanat, K., & Sofyalıoğlu, M. (2018). Approximation by (p, q)-Lupaş–Schurer–Kantorovich operators. Journal of Inequalities and Applications, 2018, 263. doi:10.1186/s13660-018-1858-9
- Kanat, K., & Sofyalıoğlu, M. (2021). On Stancu type Szász-Mirakyan-Durrmeyer Operators Preserving exp(2ax), a > 0. Gazi University Journal of Science, 34(1), 196-209. doi:10.35378/gujs.691419
- Koelink, H. T., & Koornwinder, T. H. (1990). q-special functions, a tutorial. In: M. Gerstenhaber, & J. Stasheff (Eds.) Deformation Theory and Quantum Groups with Applications to Mathematical Physics (Proceedings of an AMS-IMS-SIAM 1990), Contemporary Mathematics, 134, 141-142.
- Lupaş, A. (1987). A q-analogue of the Bernstein operator. In: Seminar on numerical and statistical calculus, University of Cluj-Napoca, 9, 85-92.
- Mursaleen, M., Ansari, K. J., & Khan, A. (2015a). On (p, q)-analogue of Bernstein operators. Applied Mathematics and Computation, 266, 874-882. doi:10.1016/j.amc.2015.04.090
- Mursaleen, M., Ansari, K. J., & Khan, A. (2015b). Some Approximation Results by (p, q)-analogue of Bernstein-Stancu operators. Applied Mathematics and Computation, 264, 392-402. doi:10.1016/j.amc.2015.03.135
- Mursaleen, M., Nasiuzzaman, Md., & Nurgali, A. (2015c). Some approximation results on Bernstein-Schurer operators dened by (p, q)-integers. Journal of Inequalities and Applications, 2015, 249. doi:10.1186/s13660-015-0767-4
- Phillips, G. M. (1997). Bernstein polynomials based on the q-integers. Annals of Numerical Mathematics, 4(1-4), 511-518.
- Sahai, V., & Yadav, S. (2007). Representations of two parameter quantum algebras and (p, q)-special functions. Journal of Mathematical Analysis and Applications, 335(1), 268-279. doi:10.1016/j.jmaa.2007.01.072
- Sofyalıoğlu, M., Kanat, K., & Çekim, B. (2021). Parametric generalization of the Meyer-König-Zeller operators. Chaos, Solitons & Fractals, 152, 111417. doi:10.1016/j.chaos.2021.111417
- Yüksel, İ. (2013). Direct results on the q-mixed summation integral type operators. J. Applied Functional Analysis, 8(2), 235-245.
H. Deniz ADA, Canan İNAL, Kadir GÖK
Ibrahim TUKENMEZ, Huseyin Baran AKINBINGOL