Yerçekimine ters ve geleneksel döküm yöntemleri ile üretilen AlSi alaşımının adhesif aşınma davranışının incelenmesi

Bu çalışmada, geleneksel yerçekimi ve yerçekimine ters döküm yöntemleri ile üretilen AlSi alüminyum alaşımının adhesif aşınma davranışı incelendi. Numuneler, yerçekimine ters ve geleneksel döküm yöntemleri ile yaş kum kalıba 600, 640 ve 690 °C sıcaklıkta, 100, 250 ve 500 mmHg vakum şartlarında dökülerek üretildi. Bu numuneler, disk üzerinde pim adesif aşınma cihazında test edildi. Adhesif aşınma testleri 20 ve 60 N yükler altında ve 1 m/s kayma hızında gerçekleştirildi. Adhesif aşınma test sonuçları; düşük yükte (20N) alaşımın aşınma kaybının sertliği ile benzer bir değişim sergilediği, ancak yük arttığında (60N) alaşımda meydana gelen sertlik artışından dolayı nedeniyle adhesif aşınma direncinin azaldığını gösterdi.

Investigation of adhesive wear behavior of counter gravity and traditional casting process AlSi alloy

In this study, effect of counter gravity casting method on the adhesive wear behaviors of AlSi alloy was investigated. The counter gravity casting and gravity casting specimens were produced by pouring at 600, 640 and 690 °C, with 100, 250 and 500 mmHg vacuum level in sand mould. These specimens were tested on the modified pin on disk adhesive wear tester. Adhesive wear tests were performed on the under normal loads of 20 and 60 N, and sliding speed of 1 m/s. Adhesive wear test results showed that the specimens have similar wear trend with hardness results under low load (20N), but when the load increased (60N), the specimen with highest hardness exhibited the worst adhesive wear resistance.

___

  • 1. Chandley, G.D., “Counter Gravity Casting of Aluminum in Investment and Sand Molds”, AFS Transactions, 86-39, 209-214, 1986.
  • 2. Anon, “Turning the Gating World Upside Down”, Thecnical Paper, Hitchiner Manufacturing Co., (www.hitchiner.com),, (Erişim Tarihi: Kasım 2004).
  • 3. Ripkin, F. and Lipson, S., “Counter Gravity Casting of Aluminum Alloys in Green Sand Molds”, AFS Transactions, 67-70, 581-592, 1967.
  • 4. Lipson, S. and Ripkin, F., “Effect of Sections Thickness osn The Tensile Properties of Thin- Section Aluminum Alloy Sand Casting”, AFS Transactions, 69, 192-197, 1969.
  • 5. Chandley, G.D. and Flemings, M.C., “Gating Premium Quality Casting”, AFS Transactions, 88-37, 121-128, 1988.
  • 6. Flemings, M.C., Conrad, H.F.and Taylor, H.F., “Aluminum Alloys Fluidity Test”, AFS Transactions, 93-59, 496-507, 1993.
  • 7. Katzarov, I.H. and others, “Porosity Formation in Axi-symetric Castings Produced by Counter- Pressure Casting Method”, International Journal of Heat and Mass Transfer, Vol 44, 111-119, 2001.
  • 8. Stefanescu, D.M. and others, “In Situ Resource Utilization for Processing of Metal Alloys on Lunar and Mars Bases”, www. science.nasa.gov/newhome/ headlines/ space98pdf/insitu.pdf,, (Erişim Tarihi: Kasım 2004).
  • 9. Chandley, G.D., “Use of Vacuum for Counter Gravity Casting of Metals”, Materals Res. Innovant, 14-23, 1999.
  • 10. Chandley, G.D., “Making casting without ladles or sprues – the CLA process”, AFS Transactions, 76-28, 37-42, 1976.
  • 11. Campbell, J., “Reliable Castings Suppluy –a report”, www.wmrc.com/businessbriefing/pdf / auto2001/book/campbell.pdf, (Erişim Tarihi: Kasım 2004).
  • 12. Chendley, D. and others, “Development of Thin- Wall Stanless Steel Castings Using Countergravity Process for Automobile Application”, AFS Transactions, 96-82, 903- 906, 1996.
  • 13. Bakhtiyarov, S.I. and others, “Advances in Countergravity Lost Foam Casting Process”, AFS Transactions, 00-49, 137-145, 2000.
  • 14. Westendorf, T.M. and others, “Countergravity Casting of Thin-Wall Al A356, Part I: A Castability Study” ,AFS Transactions, 98-100, 559-562, 1998.
  • 15. Shenefelt, J.R. and others, “Countergravity Casting of Thin-Wall Al A356, Part II: Result of Casting Characterization Studies”, AFS Transactions, 98-101, 563-566, 1998.
  • 16. Chandley, G.D., “Automatic Counter Gravity Casting of Shell Molds”, AFS Transactions, 83- 23, 199-204, 1983.
  • 17. Anon, Metal casting and molding process, American Foundryman’s Society publications, Illinois, USA, 1981.
  • 18. Jiang Q.C., Xu C.L., Lu M. and Wang H.Y., “Effect of new Al-P-Ti-TiC-Y modifier on primary silicon in hypereutectic Al-Si alloys”, Materials Letters, Vol 59, 624-628, 2005.
  • 19. Meriç C., Atik E. and Kaçar H., “Effect of aging on the abrasive wear properties of AlMgSi1 alloy”, Materials and Design, 2005, (Article in press - Short Cominication: www.sciencedirect.com) (Erişim tarihi: 03.04.2005).
  • 20. Yılmaz O. and Buytoz S., “Abrasive wear of Al2O3 – reinforced aluminum – based MMCs”, Composites Science and Technology, Vol 61, 2381-2392, 2001.
  • 21. Kim S.W., Lee U.J., Han S.W., Kim D.K. and Ogi K., “Heat treatment and wear charecteristics of Al/SiCp composites fabricated by dublex process”, Composites Part B: engineering, Vol 34, p: 737-745, 2003.
  • 22. Sawla S., Das S., “Combinet effect of reinforcement and heat treatment on the two body abrasive wear of aluminum alloy and aluminum particle composites”, Wear, Vol 257, 555-561, 2004.
  • 23. Lasa L. and Rodriguez-Ibabe J.M., ‘Effect of composition and processing route on the wear behaviour of Al-Si alloys’, Scripta Materialia, Vol 46, 477-481, 2002.
  • 24. Sun Y., Baydoğan M. and Çimenoğlu H., ‘The effect of deformation before ageing on the wear resistance of an aluminum alloy’, Materials Letters, Vol 38, 221-226, 1999.
Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi-Cover
  • ISSN: 1300-1884
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1986
  • Yayıncı: Oğuzhan YILMAZ