Yeni bir yüksek ivmeli göğüs kompresyon cihazının tasarımı ve simülasyonu
Kalp durması için bir tıbbi müdahale yöntemi olan KardiyoPulmoner Resusitasyon (KPR), kanın hayati organlara akması için enerji veren etkili göğüs kompresyonları gerektirir. Amerikan Kalp Derneği (AHA) yönergelerine göre önerilen KPR tekniği standart manuel KPR'dir. Ancak son yıllarda, daha tutarlı göğüs kompresyonu elde etmek için birçok farklı mekanik KPR teknolojisi geliştirilmiştir. Bu teknolojiler, AHA kılavuzlarında belirtilen manuel KPR parametrelerine ulaşabilseler de, hiçbirinin manuel KPR'den daha üstün olduğu henüz kanıtlanmamıştır. Makinelerin insanlardan nasıl daha üstün olamayacağının olası bir açıklaması başlangıç momentumudur. İnsan üst vücut kütlesi, manuel KPR sırasında iyi bir momentum kaynağı olabilir ve yüksek başlangıç momentumlu ve dolayısıyla yüksek ivmeli göğüs kompresyonu, kanın pulsatil bir dalga biçiminde akmasını sağlayabilir. Bu çalışmada, çift kaydırıcı-krank ve dinamik biyelden oluşan yüksek ivmeli göğüs kompresyonu yapabilen özel piston mekanizmalı yeni bir mekanik KPR cihazı tasarlanmıştır. Tasarlanan piston mekanizmasının simülasyon sonuçlarının konum ve hız-zaman grafikleri hem matematiksel model hem de başka bir çalışmadan elde edilen LUCAS-2 ve CORPULS cihazlarının sonuçları ile karşılaştırılmış ve önerilen mekanizmanın daha yüksek ivmeye sahip olduğu doğrulanmıştır.
Design and simulation of a novel high acceleration chest compression device
Cardiopulmonary Resuscitation (CPR), a method of medical intervention for Cardiac Arrest, requires effective chest compressions that energize blood to flow to vital organs. The recommended technique for CPR according to the American Heart Association (AHA) guidelines is standard manual CPR. However, in recent years, many different mechanical CPR technologies have been improved to achieve more consistent chest compression. Although these technologies can achieve manual CPR parameters described in AHA guidelines, none have been proven to be superior to manual CPR. A potential explanation of how machines cannot be superior to humans is initial momentum. The human upper body mass can be a good source of momentum during manual CPR, and chest compression with high initial momentum and hence with high acceleration can enable blood to flow in a pulsatile waveform. In this study, a novel mechanical CPR device with a special piston mechanism capable of high acceleration chest compression consisting of a double slider-crank and dynamic conrod is designed. The position and velocity-time graphs of the simulation results of the designed piston mechanism are compared with both mathematical modelling and the results of LUCAS-2 and CORPULS devices obtained from another study, and it is confirmed that the proposed mechanism has higher acceleration.
___
- [1] Mehra R. Global public health problem of sudden cardiac death, J Electrocardiol;40,118–22, 2007.
- [2] Neumar RW, Otto CW, Link MS, Kronick SL, Shuster M, Callaway CW, et al. Part 8: adult advanced cardiovascular life support: 2010 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care, Circulation,122,729–67, 2010.
- [3] Brooks SC, Hassan N, Bigham BL, Morrison LJ. Mechanical versus manual chest compressions for cardiac arrest, Cochrane Database Syst Rev,2, 2014.
- [4] Kleinman ME, Brennan EE, Goldberger ZD, Swor RA, Terry M, Bobrow BJ, et al. Part 5: adult basic life support and cardiopulmonary resuscitation quality: 2015 American Heart Association guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation,132,414–35, 2015.
- [5] Perkins GD, Handley AJ, Koster RW, Castrén M, Smyth MA, Olasveengen T, et al. European Resuscitation Council Guidelines for Resuscitation 2015: Section 2. Adult basic life support and automated external defibrillation. Resuscitation, 95, 81–99, 2015.
- [6] Pozner C. Advanced cardiac life support (ACLS) in adults. UpToDate Waltham, MA2015 2016.
- [7] American Heart Association (AHA). Highlighths of the 2020 American Heart Association Guidelines for CPR and ECC 2020:30, https://crp.heart.org/-/media/cpr-files/cpr-guidelines-files/highlights/hghlghts_2020_ecc_guidelines_english.pdf.
- [8] Sugerman NT, Edelson DP, Leary M, Weidman EK, Herzberg DL, Hoek TL Vanden, et al. Rescuer fatigue during actual in-hospital cardiopulmonary resuscitation with audiovisual feedback: a prospective multicenter study, Resuscitation, 80, 981–4, 2009.
- [9] Abella BS, Alvarado JP, Myklebust H, Edelson DP, Barry A, O’Hearn N, et al. Quality of cardiopulmonary resuscitation during in-hospital cardiac arrest, Jama, 293(3):305–10, 2005.
- [10] Kern KB, Hilwig RW, Berg RA, Sanders AB, Ewy GA. Importance of continuous chest compressions during cardiopulmonary resuscitation: improved outcome during a simulated single lay-rescuer scenario, Circulation, 105 (5):645–9, 2002.
- [11] Harrison-Paul R. A history of mechanical devices for providing external chest compressions, Resuscitation,73 (3), 330–6, 2007.
- [12] Krep H, Mamier M, Breil M, Heister U, Fischer M, Hoeft A. Out-of-hospital cardiopulmonary resuscitation with the AutoPulseTM system: A prospective observational study with a new load-distributing band chest compression device, Resuscitation, 73(1),86–95, 2007.
- [13] Steen S, Liao Q, Pierre L, Paskevicius A, Sjöberg T. Evaluation of LUCAS, a new device for automatic mechanical compression and active decompression resuscitation, Resuscitation, 55(3):285–99, 2002.
- [14] Li Y, Xu Q. Design and development of a medical parallel robot for cardiopulmonary resuscitation, IEEE/ASME Trans Mechatronics, 12(3), 265–73, 2007.
- [15] Halperin HR, Paradis N, Ornato JP, Zviman M, LaCorte J, Lardo A, et al. Cardiopulmonary resuscitation with a novel chest compression device in a porcine model of cardiac arrest: improved hemodynamics and mechanisms, J Am Coll Cardiol, 44 (11), 2214–20, 2004.
- [16] Hayashida K, Tagami T, Fukuda T, Suzuki M, Yonemoto N, Kondo Y, et al. Mechanical cardiopulmonary resuscitation and hospital survival among adult patients with nontraumatic out‐of‐hospital cardiac arrest attending the emergency department: a prospective, multicenter, observational study in Japan (SOS‐KANTO [Survey of Survivo. J Am Heart Assoc, 6 (11),e007420, 2017.
- [17] Li H, Wang D, Yu Y, Zhao X, Jing X. Mechanical versus manual chest compressions for cardiac arrest: a systematic review and meta-analysis, Scand J Trauma Resusc Emerg Med, 24,1–10, 2016.
- [18] Bonnes JL, Brouwer MA, Navarese EP, Verhaert DVM, Verheugt FWA, Smeets JLRM, et al. Manual cardiopulmonary resuscitation versus CPR including a mechanical chest compression device in out-of-hospital cardiac arrest: a comprehensive meta-analysis from randomized and observational studies, Ann Emerg Med, 67 (3), 349–60, 2016.
- [19] Rushmer RF, Harding D, Baker D, Watson N. Initial ventricular impulse: a potential key to cardiac evaluation, Circulation, 29, 268–83, 1964.
- [20] Maier GW, Tyson Jr GS, Olsen CO, Kernstein KH, Davis JW, Conn EH, et al. The physiology of external cardiac massage: high-impulse cardiopulmonary resuscitation, Circulation,70 (1), 86–101, 1984.
- [21] Dziekan M, Jubaer S, Sell V, Manda S, Aboelzahab A, Romero-Velasteguí S, et al. Design of a low-cost, portable, and automated cardiopulmonary resuscitation device for emergency scenarios in Ecuador, 2017 IEEE Second Ecuador Tech. Chapters Meet., IEEE, 1–6, 2017.
- [22] Alam MM, Amin MA, Hussain M, Bhuiyan RH, Khan MM. Design of Piston-Driven Automated Cardiopulmonary Resuscitation Device with Patient Monitoring System, 2019 Int. Conf. Robot. Electr. Signal Process. Tech., IEEE, Equador, 211–6, 2019.
- [23] Sung C-W, Wang H-C, Shieh J-S, Jaw F-S. A novel mechanical chest compressor with rapid deployment in all population cardiopulmonary resuscitation, Sci Rep, 10(1), 1–10, 2020.
- [24] Sadani K, Prabhakar DAP, Nag P. A Cardio pulmonary resuscitation device for stretchers, Int J Eng Technol, 7, 62–5, 2018.
- [25] Castillo C, Bisera J, Ristagno G, Tang W, Weil MH. Miniaturization of a Chest Compressor for Cardiopulmonary Resuscitation, J Med Device, 3(1), 2009.
- [26] García AM, Eichhorn S, Stroh A, Polski M, Knoll A. Preliminary comparison study of two electro-mechanical cardiopulmonary resuscitation devices, 2015 Comput. Cardiol. Conf., IEEE;, 81–4, 2015.
- [27] Eichhorn S, Garcia AM, Polski M, Spindler J, Stroh A, Heller M, et al. Corpuls cpr resuscitation device generates superior emulated flows and pressures than LUCAS II in a mechanical thorax model, Australas Phys Eng Sci Med, 40 (2), 441–7, 2017.
- [28] Reant P, Dijos M, Donal E, Mignot A, Ritter P, Bordachar P, et al. Systolic time intervals as simple echocardiographic parameters of left ventricular systolic performance: correlation with ejection fraction and longitudinal two-dimensional strain, Eur J Echocardiogr, 11(10), 834–44, 2010.
- [29] Paradis NA, Halperin HR, Kern KB, Wenzel V, Chamberlain DA. Cardiac arrest: the science and practice of resuscitation medicine, Cambridge University Press; 2007.
- [30] Panchal AR, Bartos JA, Cabañas JG, Donnino MW, Drennan IR, Hirsch KG, et al. Part 3: Adult Basic and Advanced Life Support: 2020 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care, Circulation, 142 (6), 366–468, 2020.
- [31] Babbs CF. High‐impulse Compression CPR: Simple Mathematics Points to Future Research, Acad Emerg Med, 1(5), 418–22, 1994.
- [32] Babbs CF, Thelander K. Theoretically optimal duty cycles for chest and abdominal compression during external cardiopulmonary resuscitation, Acad Emerg Med, 2 (8), 698–707, 1995.
- [33] Kim T, Kim KS, Suh GJ, Kwon WY, Jung YS, Ko J-I, et al. Duty cycle of 33% increases cardiac output during cardiopulmonary resuscitation, PLoS One, 15 (1), e0228111, 2020.
- [34] Boe JM, Babbs CF. Mechanics of CPR Performed with the Patient on a Soft Bed Versus a Hard Surface, Acad Emerg Med, 6(7), 754-7, 1999.
- [35] Yılmaz E, Polat S, Solmaz H, Aksoy F, Çınar C. Thermodynamic comparison of crank-drive and rhombic-drive mechanisms for a single cylinder spark ignition engine, Journal of the Faculty Engineering and Architecture of Gazi University, 35(2), 595–606, 2020.
- [36] LOW COEFFICIENT OF FRICTION n.d. https://tivar88.com/tivar88properties/friction/ (erişim: Şubat 5, 2021).
- [37] Nysaether JB, Dorph E, Rafoss I, Steen PA. Manikins with human-like chest properties—a new tool for chest compression research, IEEE Trans Biomed Eng, 55 (11), 2643–50, 2008.
- [38] Xinwu X, Feng T, Qiuming S, Zheng W, Aijuan N, Mingxi H. A simulator of human chest that simulated force-sternal displacement relationship during cardiopulmonary resuscitation, Proc. IEEE Int. Conf. Bioinforma. Bioeng., 1–4, 2009.
- [39] Neurauter A, Nysæther J, Kramer-Johansen J, Eilevstjønn J, Paal P, Myklebust H, et al. Comparison of mechanical characteristics of the human and porcine chest during cardiopulmonary resuscitation, Resuscitation, 80 (4), 463–9, 2009.
- [40] Prinzing A, Eichhorn S, Deutsch M-A, Lange R, Krane M. Cardiopulmonary resuscitation using electrically driven devices: a review, J Thorac Dis, 7 (10),E459, 2015.
- [41] Kang W, Raphael M. Acceleration-induced pressure gradients and cavitation in soft biomaterials, Sci Rep, 8 (1), 1–12, 2018.
- [42] Babbs CF, Voorhees WD, Fitzgerald KR, Holmes HR, Geddes LA. Relationship of blood pressure and flow during CPR to chest compression amplitude: evidence for an effective compression threshold, Ann Emerg Med, 12 (9), 527–32, 1983.