TRIP çeliklerinin otomotiv endüstrisinde kullanımının incelenmesi

Türkiye ilk ağır sanayi hamlesi olan Karabük Demir-Çelik Fabrikasının kuruluşuyla birlikte entegre çeliküretimine başlamıştır. Türk Demir-Çelik endüstrisi, 21. Yüzyıla kadar olan süreçte farklı krizlere maruzkalmakla birlikte 2001 yılından itibaren hızlı bir büyüme sürecine girmiştir. Fakat küresel ekonomide gelişensektörel değişimlere ayak uydurmak ve üretimi o yönlere çevirmek gereksinim haline gelmiştir. Bu amaçlaülkemizde önemli bir sektör olarak kendini gösteren, katma değeri ve kazanımı yüksek olan otomotivendüstrisine çelik üretmek önemli bir amaç olabilir. Türkiye ve Dünya endüstrileri için gelişmiş hafif yüksekmukavemetli çelik üretimi kritik bir teknolojidir. Gelişmiş ülkelerde çelik endüstrisi entegre tesislere dayalı olup,katma değeri yüksek; gelişmiş yüksek mukavemetli çelik, paslanmaz çelik v.b. gibi ürünlere yönelmiştir.Ülkemizde farklı çelik sac türleri üretilmekle beraber özellikle son yıllarda yoğun bir şekilde kullanılan çift fazlıçelik düşük miktarlarda üretilmekte, ilerleyen yıllarda otomobil ağırlığını azaltmak amacıyla kullanımı artacakolan TRIP çeliği ise üretilmemektedir. Literatür çalışması son yıllarda yapılan özgün çalışmalar çerçevesindebiçimlendirilmiştir. Çalışmada TRIP çeliklerinin otomobillerde kullanılan diğer çeliklerle mikroyapı, çekmedayanımı, çarpma (darbe), şekillendirilebilme ve yorulma özellikleri gibi kriterlere bağlı olarak karşılaştırmalıbir biçimde sunulmuştur. Ayrıca TRIP çeliğinin otomotiv endüstrisinde kullanımı ve Türkiye’de üretilebilirliğihakkında da bir çalışma gerçekleştirilmiştir.

The investigation of the use of TRIP steels in automotive industry

Turkey has started the integrated steel production with the foundation of Karabük Iron-Steel Factory which is thefirst heavy industry attempt of the country. Even though Turkish Iron-Steel industry has been exposed to variouscrises until the 21stcentury, it took an important step into a growth process starting from the year 2001.However, to keep up with the sectoral changes developing in the global economy and to direct the production inaccordance with such developments have become a requirement. For this purpose, it might be an importantobjective to produce steel for the automotive industry that has come into prominence in our country with a highlevel of added value and income. Production of light and advanced high-strength steel for Turkish and Worldindustries is a very critical technology. In developed countries, the steel industry is based on integrated plantsand has been directed to products such as advanced high-strength steel, stainless steel, etc. that have a very highadded value. In spite of that different kinds of steel sheet are being produced in our country, the dual phase steelwhich has been intensively utilized especially in recent years is being produced in low quantities whereas TRIPsteel, which shall be used more with the purpose of reducing the weight of the vehicles in future, is not beingproduced. The literature study has done considering most recent research shaped within the frame of originalstudies conducted in recent years. In this study, TRIP steels have been introduced in comparison with other steelsused in automobiles based on certain criteria such as microstructure, tensile strength, crash (impact), formabilityand fatigue. Furthermore, a study has also been conducted about the utilization of the TRIP steel in automotiveindustry and manufacturability in Turkey.

___

  • 1. Dokuzuncu Kalkınma Planı, 2007-2013, “Ana Metal Sanayi”, Özel İhtisas Komisyonu Raporu, Ankara 2007.
  • 2. “Türk Demir Çelik Sektörü”, Türkiye Demir- Çelik Üreticileri Derneği, 2009. (http://www.dcud.org.tr/dcs.aspx).
  • 3. Tetsuya, M., Hasegawa, K., Kawabe, H., “UHSS Sheets for Bodies, Reinforcement Parts, and Seat Frame Parts of Automobile Ultra High-Strength Steel Sheets Leading to Great Improvement in Crashworthiness” JFE Technical Report, Vol 4, 38-43, 2004.
  • 4. Manuel, F., Christoph, M.S., Colin, V., “A Regression on Climate Policy: The European Commission’s Legislation to Reduce CO2 Emissions from Automobiles”, Transportation Research Part A, 2010. doi:10.1016/j.tra.2009.12.001
  • 5. Volkan, E.E., Arısoy, C.F., Kelami, Ş., “Otomotiv Endüstrisinde Çelikten Vazgeçilebilir Mi?”, Metal Dünyası, Vol 125, 74-81, 2003.
  • 6. Ushioda, K., “Recent Developments in Steel Sheers”, Scandinavian Journal of Metallurgy, Vol 28, 33-39, 1999.
  • 7. SSAB Swedish Steel, “Highter Strength-Lower Weight: Educing the Body Weighty Using Extra and Ultra Hight Strength Steel”, GB 2000 Lygner Form& Tryck 2004.
  • 8. “21st Century Steel”, World Steel Assosiation, 2008-2009 Update, 1-32, 2009. (http://www.worldsteel.org/pictures/publicationfil es/21st%20century%20steel.pdf
  • 9. Lindsay, B., Harry, E., “Automakers and Suppliers Accelerate Their Efforts to Reduce Vehicle Weight by Engineering Them for Greater Use of Lighter, Stronger Materials”, Mass Reduction Special Report, 16 March 2009.
  • 10. Akay, D., Kurt, M., “Otomobil Emniyet Kemeri Kullanılabilirlik Testi”, Gazi Üniversitesi. Mühendislik-Mimarlık Fakültesi Dergisi, Cilt 21, No 1, 183-191, 2006.
  • 11. AISI Market Development, “An Investment in Steel’s Future”, American Iron and Steel Institute, 2002– 2003, Progress Report 2003.
  • 12. “Advanced High-Strength Steels–A Collision Repair Perspective”, Technical Information for the Collision Industry, June 12, 2006. (www.i- car.com)
  • 13. “New Study Finds Increased Use of Advanced High-Strength Steels Helps Decrease Overall Vehicle Weight”, Automotive Applications Council, 2010.  (http://www.steel.org/AM/Template.cfm?Section =Press_Releases9&TEMPLATE=/CM/ContentD isplay.cfm&CONTENTID=32077)
  • 14. “Advanced High Strength Steel (AHSS) Application Guidelines”, World Auto Steel, Version 4.1, 1-171, 08 June 2009. (www.worldautosteel@org).
  • 15. Hayat, F., Demir, B., Acarer, M., Aslanlar, S., “Effect of Weld Time and Weld Current on the Mechanical Properties of Resistance Spot Welded IF (DIN EN 10130–1999) Steel”, Kovove Materials, Vol 47, No 1, 11-17, 2009.
  • 16. Hayat, F., Demir, B., Aslanlar, S., “IF 7315 Çeliklerinin Yapıştırmalı Nokta Direnç Kaynaklı Birleştirmelerinin İncelenmesi”, 14. Uluslararası Metalurji ve Malzeme Kongresi, İstanbul, 16- 18 Ekim 2008.
  • 17. Hayat, F., Demir, B., Aslanlar, S., “Nokta Direnç Kaynak Süresinin IF 7114 Çeliği Birleştirmelerinin Mekanik Özelliklerine Etkisi”, IV. Demir Çelik Kongresi, Karabük, 243-250, 1-3 Kasım 2007.
  • 18. Hayat, F., Demir, B., Acarer, M., "0,067C ve 1,74 Mn’lı Çift Fazlı Çeliklerin Mikroyapı- Dayanım İlişkisi ve Kırılma Davranışları", Teknoloji Dergisi, Cilt 10, Sayı 1, 111-120, 2007.
  • 19. Speich, GR., “Dual Phase Steels”, Heat Treating, ASM Handbook, fifth prinnting, 424-429, 1997.
  • 20. Speich, GR., Miller, RL., “Mechanical Properties of Ferrit-Martensite Steels” In: Kott RA, Morris JW, editors, “Structure and Properties of Dual-Phase Steels”, New York: AIME, 1-45, 1979.
  • 21. Erdoğan, M., “The Effect of New Ferrit Content on Tensile Fracture Behaviour of Dual Phase Steels”, Journal of Materials Science, Vol 37, No 17, 3623-3630, 2002.
  • 22. Erdoğan, M., Priestner, R., “Effect of Martensite Content, its Dispertion and Epitaxial Content on Bauschinger Behaviour of Dual Phase Steel”, Materials Science and Technology, Vol 15, No 11, 1273-1284, 1999.
  • 23. Kim, K.J. Chang, G.L., Sunghak L., “Effects of Martensite Morphology on Dynamic Torsional Behaviour in Dual Phase Steels”, Scripta Materialia, Vol 38, No 1, 27-32, 1997.
  • 24. Davies, R.G., “Influence of Martensite Composition and Content on The Properties of Dual-Phase Steels”, Metallurgical Transactions, Vol 18A, 671-679, 1978.
  • 25. The UltraLight Steel Auto Body Programme, “UltraLight Steel Auto Closures” Final Report, Porsche Engineering Services, Inc. May 2001. (www.ulsab-avc.org).
  • 26. Kayalı, E.S., Ensari, C., Silahtaroğlu, S., “Derin Çekme Kalitesindeki Saclarda Özellikleri Etkileyen Faktörler”, 3. Ulusal Metalürji Kongresi, ODTÜ, Ankara, 581-586. Aralık 1979.
  • 27. Öztürk, T., Bor, Ş., Atasoy, E., Alpas, T., “Erdemir 6114 Saclarının Derin Çekme Özelliklerini Etkileyen Faktörler”, Doğa Mühendislik ve Çevre Dergisi, Vol 1, 318-322, 1987.
  • 28. “New Study Finds Increased Use of Advanced Hıgh-Strength Steels Helps Decrease Overall Vehicle Weight”, American Iron and Steel Institute, 2009.
  • 29. “Environmental Case Study Automotive: an Advanced High-Strength Steel Family Car”, World Steel Association, 2006. (www.worldsteel.org).
  • 30. Corus Research, Dev.&Technology, Corporate Responsibility Report 2007/08.
  • 31. ArcelorMittal, “How Will We Achieve: Safe Sustainable Steel?”, Corporate Responsibility Report, 2008.
  • 32. Flat Carbon Europe, “Client Magazine”, ArcelorMittal, September, 2007. (www.arcelormittal.com/fce/repository/Update/E N_UpdateFCE_aug07.pdf)
  • 33. “Arcelor Body Concept”, Arcelor Auto, Arcelor Group.
  • 34. “50 Years as Steel Supplier to Volvo”, Corus Research, No. 1, February 2007. (http://www.productrange.nl/uploadz/m20071026 115451.pdf)
  • 35. Basuki, A., Aernoudt, E., “Influence of Rolling of TRIP Steel in the Intercritical Region on the Stability of Retained Austenite”, Journal of Materials Processing Technology, Vol 89, No 1, 37-43, 1999.
  • 36. Furne´mont, Q., Kempf, M., Jacques, P.J., Gorken, M., Delannay, F., “On the Measurement of the Nanohardness of the Constitutive Phases of TRIP-assisted Multiphase Steels”, Materials Science and Engineering A, Vol 328, No 1, 26– 32, 2002.
  • 37. Berrahmoune, M.R., Berveiller, S., Inal, K., Moulin, A., Patoor, E., “Analysis of the Martensitic Transformation at Various Scales in TRIP Steel”, Materials Science and Engineering A, Vol 378, No 1, 304–307, 2004.
  • 38. Hutchinson, B., “Texture in Hot Rolled Austenite and Resulting Transformation Products”, Materials Science and Engineering A, Vol 257, No 1, 9–17, 1998.
  • 39. Zhao, L., Dijk, N.H., Brück, E., Sietsma, J., Zwaag, S., “Magnetic and X-ray Diffraction Measurements for the Determination of Retained Austenite in TRIP steels”, Materials Science and Engineering A, Vol 313, No 1, 145–152, 2001.
  • 40. Li, L., Wollants, P., He, Y.L., Coomman, B.C., Wei X.C., Xu, Z.Y., “Review and Prospect of High Strength Low Alloy TRIP Steel”, Acta Metallurgica Sinica (English Letters) Vo1 16, No 6, 457-465, 2003.
  • 41. Hoon, H., Kim, S.B., Song, J.H., and Lim, J.H., “Dynamic Tensile Characteristics of TRIP-type and DP-type Steel Sheets for an Auto-Body”, International Journal of Mechanical Sciences, Vol 50, No 5, 918–931, 2008.
  • 42. Dan, W.J., Li, S.H., Zhang, W.G., Lin, Z.Q.,  “The Effect of Strain-Induced Martensitic Transformation on Mechanical Properties of TRIP Steel”, Materials and Design, Vol 29, No 4, 604-612, 2008.
  • 43. Yinghui, Z., Yonli, M., Yonglin, K., Hao, Y., Mechanical Properties and Microstructure of TRIP Steels Produced Using TSCR Process”, Journal of University of Science and Technology, Beijing Vol 13, No 5, 416-421, 2006.
  • 44. WU, D., Zhuang, L., Hui-sheng, L., “Effect of Controlled Cooling After Hot Rolling on Mechanical Properties of Hot Rolled TRIP Steel”, Journal of Iron and Steel Research, International, Vol 15, No 2, 65-70, 2008.
  • 45. Koh-Ichi, S., Toshiki, M., Shun-Ichi H., Yoichi, M., “Formability of Nb Bearing Ultra High- Strength TRIP-aided Sheet Steels”, Journal of Materials Processing Technology, Vol 177, No 1, 390–395, 2006.
  • 46. Skoalova, L., Divišová, R., Jandová, D., “Thermo-Mechanical Processing of Low-Alloy TRIP steel”, Journal of Materials Processing Technology, Vol 175, No 1, 387–392, 2006.
  • 47. Wen, S., Lin L., Cooman, B.C.D., Wollants, P., Yang, C., “Thermal Stability of Retained Austenite in TRIP Steel After Different Treatments”, Journal of Iron and Steel Research, International, Vol 15, No 1, 61-64, 2008.
  • 48. Zhuang, L., Di, W., Rong, H., “Austempering of Hot Rolled Si-Mn TRIP Steels”, Journal of Iron and Steel Research, International, Vol 13, No 5, 41-46, 2006.
  • 49. Xiaodong, Z., Zhaohui, M., Wang L., “Current Status of Advanced High Strength Steel for Auto- making and its Development in Baosteel”, Baosteel Research Institute, Shanghai, 201900, 1-8, China.
  • 50. Chatterjee, S., “Transformations in TRIP-assisted Steels: Microstructure and Properties”, Darwin College, University of Cambridge, November, 2006.
  • 51. Hanzaki, AZ., Hodgson PD., Yue, S., “Hot Deformation Characteristics of Si-Mn TRIP Steels With and Without Nb Microalloy Additions”, ISIJ International, Vol 35, No 4, 324-330, 1995.
  • 52. La-Neuve, P. Jacques, PhD Thesis, Universite´ Catholique de Louvain, Belgium, 1998. 
  • 53. Basuki, A., and Aernoudt, E., “Effect of Deformation in the Intercritical Area on the Grain Refinement of Retained Austenite of 0.4C TRIP Steel”, Scripta Materialia, Vol 40, No 9, 1003– 1008, 1999.
  • 54. Cooman, B.C.D., “Structure–Properties Relationship in TRIP Steels Containing Carbide- Free Bainite”, Current Opinion in Solid State and Materials Science, Vol 8, No 4, 285–303, 2004.
  • 55. Oliver, S. Jones, T.B., Fourlaris, G., “Dual Phase Versus TRIP Strip Steels: Microstructural Changes As a Consequence of Quasi-Static and Dynamic Tensile Testing”, Materials Characterization, Vol 58, No 4, 390-400, 2007.
  • 56. Hilditch, T.B., Speer, J.G., Matlock, D.K.,  “Effect of Susceptibility to Interfacial Fracture on Fatigue Properties of Spot-Welded High Strength Sheet Steel”, Materials and Design, Vol 28, No 10, 2566–2576, 2007.
  • 57. Liu, Q., Tang, D., Jiang, H., Liu, R., Tang, X.,  “Research and Development of 780 MPa Cold Rolling TRIP-aided Steel”, International Journal of Minerals, Metallurgy and Materials, Vol 16, No 4, 399-406, 2009.
  • 58. “Material assessment for crash”, Corus Research, MEP/02-2002, (http://www.corusautomotive.com/file_source/St aticFiles/Microsites/Automotive/Publications/Aut o%20Apps%20PDFs/2008%20PDFs/Material%2 0assessment%20for%20crash_20071101.pdf)
  • 59. Uenishi, A., Kuriyama, Y., Takahashi, M., “High-Strength Steel Sheets Offering High Impact Energy-Absorbing Capacity”, Nippon Steel Technical Report, (Japan), 81, 17, 2000.
  • 60. Takahashi, M., Kawano, O., Hayashida, T., Okamoto, R., Taniguchi, H., “High Strength Hot- Rolled Steel Sheets for Automobiles”, Nippon Steel Technical Report, 88, 2-7, 2003.
  • 61. Sakuma, Y., Kimura, N., Itami, A., “Next- Generation High-Strength Sheet Steel Utilizing Transformation-Induced Plasticity (TRIP) Effect”, Nippon Steel Technical Report, no.64 March 1995.
  • 62. Parish, C.M., “Fundamental Study of Phase Transformations in Si-Al TRIP Steels”, Bs in Material Science and Engineering A, NCS University, 2000.
  • 63. Andrew, K.W., “Empirical Formulae for the Calculation of Some Transformation Temperatures”, Journal of the Iron and Steel Institute, Vol 203, 721-727, 1965.
  • 64. Topbaş, M.A., “Isıl İşlemler”, Prestij Yayıncılık, Yıldız Teknik Üniversitesi, İstanbul, 1993.
  • 65. Wasilkowska, P., Tsipouridis, E.A., Werner, A., Pichler, S., Traint “Microstructure and Tensile Behaviour of Cold-Rolled TRIP-aided Steels”, Journal of Materials Processing Technology, Vol 157–158, No 1, 633–636, 2004.
  • 66. Wei, X., Renyu, F., Li L., “Tensile Deformation Behavior of Cold-Rolled TRIP-aided Steels Over Large Range of Strain Rates”, Materials Science and Engineering A, Vol 465, No 1, 260–266, 2007.
  • 67. Kim, S.J., Chang G.L., Lee, T.H., Oh, C.S., “Effect of Cu, Cr and Ni on Mechanical Properties of 0.15 wt.% C TRIP-aided Cold Rolled Steels”, Scripta Materialia, Vol 48, Vol 5, 539–544, 2003.
  • 68. “Top Steel Producer Campanies”, World Steel Assosiation,2009. (http://www.worldsteel.org/?action=programs&id =53)
Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi-Cover
  • ISSN: 1300-1884
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1986
  • Yayıncı: Oğuzhan YILMAZ