Tedarikçi seçimi için yeni bir aralık tip-2 hibrit bulanık kural tabanlı AHP sistemi

Bulanık karar vermenin ana çalışma alanı, belirsizlik altında karar vermektir. Çünkü belirsizliğe neden olan kriterlere, alternatiflere ve sonuçlara ilişkin sayısal değerler değil, sözel değerler mevcuttur. Tip-1 bulanık kümelerin üyelik işlevleri, kendisiyle ilgili bir belirsizliğe sahip değildir. Oysa tip-1 bulanık kümelere göre tip-2 bulanık kümeler ile aşırı aritmetik işlemlere ihtiyaç duyulurken; tip-2 bulanık kümeler, tip-1 bulanık kümeleri ve sistemleri yaygınlaştırarak üyelik fonksiyonlarını tanımlama konusunda daha fazla belirsizliği ele alabilmektedir. Tip-2 bulanık kümesi, üyelik fonksiyonlarının belirsizliğini bulanık küme teorisine dahil etmemizi sağlar. Bu nedenle, çok kriterli karar verme (MCDM) problemlerinin tip-2 bulanık sayılar ile entegre edilmesi karar verme sürecinde avantajlar sağlayacaktır. Öte yandan, karar vericinin etki derecesini yansıtmak için insan duyarlılığının kullanılmasını gerektiren karar verme sürecinin karma bir analizi bulanık kural tabanı ile ifade edilebilir. Analitik Hiyerarşi Süreci (AHP), aynı anda çeşitli ve çelişen kriterleri hesaba katan ve yaygın bir şekilde kullanılan MCDM yöntemidir. Ve AHP yöntemi, aynı zamanda karar vericilerin kişisel tercihlerini çözüm sürecine dahil etmelerini sağlayan bir yöntemdir. Amacımız, tip-2 bulanık kümeleri için yeni bir sıralama yöntemi ile birlikte bir Aralık Tip-2 Bulanık Kuralı Tabanlı AHP (AT2 BKT AHP ) yöntemini geliştirmektir. Önerilen metodu, Aralık Tip-2 Bulanık AHP (IT2 FAHP) metodu ile bir tedarikçi seçim problemine karşılaştırmalı olarak uygulayacağız. Ayrıca çalışma sonucunda tedarikçi seçimi sıralaması için ASP.NET ortamında C# programlama dili kullanılarak görsel bir uzman sistem tasarımı yapılmıştır.

An new expert interval type-2 hybrid fuzzy rule-based AHP system for supplier selection

The main study area of fuzzy decision making is decision making under uncertainty. Because there are verbal values, not numerical values, regarding criteria, alternatives and results which causes uncertainty in return. The membership functions of type-1 fuzzy set do not have any uncertainty related to themselves. Whereas, the excessive arithmetic operations are required by type-2 fuzzy set in comparison with type-1 fuzzy set, type-2 fuzzy set may address more uncertainty in the issue of defining the membership functions by generalizing type-1 fuzzy sets and systems. A type-2 fuzzy set lets us incorporate the uncertainty of membership functions into the fuzzy set theory. For this reason, integrating MCDM problems with interval type-2 fuzzy numbers will provide advantages in the decision-making process. On the other hand, a mixed analysis of the decision-making process, which requires the use of human sensitivity to reflect the influence level of the decision maker, can be expressed as the fuzzy rule base. Analytic Hierarchy Process (AHP) is a widely used multicriteria decision making (MCDM) that can take into account various and conflicting criteria at the same time. And the AHP method is also a method that allows decision makers to incorporate their personal preferences into the solution process. Our objective is to develop an Interval Type-2 Fuzzy Rule-Based AHP (AT2 BKT AHP ) method together with a new ranking method for type-2 fuzzy sets. We will apply the proposed method comparatively with the interval type-2 fuzzy AHP (IT2 FAHP) method to a supplier selection problem. At the end of the study, supplier selection for ranking a visual expert system design was made using C # programming language in ASP.NET environment.

___

  • 1. Karakaşoğlu, N. (2008). Bulanık çok kriterli karar verme yöntemleri ve bir uygulama, Yüksek Lisans Tezi, Pamukkale Üniversitesi Sosyal Bilimler Enstitüsü, Denizli.
  • 2. Chen, C. T., & Huang, S. F. (2006). Order-fulfillment ability analysis in the supply-chain system with fuzzy operation times. International Journal of Production Economics, 101(1), 185-193.
  • 3. Ke, H., Cui, Z., Govindan, K., & Zavadskas, E. K. (2015). The impact of contractual governance and trust on EPC projects in construction supply chain performance. Inzinerine Ekonomika-Engineering Economics, 26(4), 349-363.
  • 4. Guo, C., & Li, X. (2014). A multi-echelon inventory system with supplier selection and order allocation under stochastic demand. International Journal of Production Economics, 151, 37-47.
  • 5. Kannan, D., Khodaverdi, R., Olfat, L., Jafarian, A., & Diabat, A. (2013). Integrated fuzzy multi criteria decision making method and multi-objective programming approach for supplier selection and order allocation in a green supply chain. Journal of Cleaner production, 47, 355-367.
  • 6. Önüt, S., Gülsün, B., Tuzkaya, U. R., & Tuzkaya, G. (2008). A two-phase possibilistic linear programming methodology for multi-objective supplier evaluation and order allocation problems. Information Sciences, 178(2), 485-500.
  • 7. Sanayei, A., Mousavi, S. F., Abdi, M. R., & Mohaghar, A. (2008). An integrated group decision-making process for supplier selection and order allocation using multi-attribute utility theory and linear programming. Journal of the Franklin institute, 345(7), 731-747.
  • 8. Kilic, H. S. (2013). An integrated approach for supplier selection in multi-item/multi-supplier environment. Applied Mathematical Modelling, 37(14-15), 7752-7763.
  • 9. Yazdani, M., Hashemkhani Zolfani, S., & Zavadskas, E. K. (2016). New integration of MCDM methods and QFD in the selection of green suppliers. Journal of Business Economics and Management, 17(6), 1097-1113.
  • 10. Rezaei, J., Fahim, P.B., Tavasszy, L., 2014. Supplier selection in the airline retail industry using a funnel methodology: conjunctive screening method and fuzzy AHP. Expert Syst. Appl. 41 (18), 8165e8179. http://dx.doi.org/10.1016/ j.eswa.2014.07.005.
  • 11. Yazdani, M., Chatterjee, P., Zavadskas, E. K., & Zolfani, S. H. (2017). Integrated QFD-MCDM framework for green supplier selection. Journal of Cleaner Production, 142, 3728-3740.
  • 12. Omurca, S. I. (2013). An intelligent supplier evaluation, selection and development system. Applied Soft Computing, 13(1), 690-697.
  • 13. Shidpour, H., Shahrokhi, M., & Bernard, A. (2013). A multi-objective programming approach, integrated into the TOPSIS method, in order to optimize product design; in three-dimensional concurrent engineering. Computers & Industrial Engineering, 64(4), 875-885.
  • 14. Awasthi, A., Chauhan, S. S., & Omrani, H. (2011). Application of fuzzy TOPSIS in evaluating sustainable transportation systems. Expert systems with Applications, 38(10), 12270-12280.
  • 15. Şengül, Ü., Eren, M., Shiraz, S. E., Gezder, V., & Şengül, A. B. (2015). Fuzzy TOPSIS method for ranking renewable energy supply systems in Turkey. Renewable Energy, 75, 617-625.
  • 16. Kahraman, C., Öztayşi, B., Sarı, İ. U., & Turanoğlu, E. (2014). Fuzzy analytic hierarchy process with interval type-2 fuzzy sets. Knowledge-Based Systems, 59, 48-57.
  • 17. Tseng, M. L., Lin, Y. H., Chiu, A. S., & Chen, C. Y. (2008). Fuzzy AHP approach to TQM strategy evaluation. Industrial Engineering & Management Systems, 7(1), 34-43.
  • 18. Wu, Z., & Chen, Y. (2007). The maximizing deviation method for group multiple attribute decision making under linguistic environment. Fuzzy Sets and Systems, 158(14), 1608-1617.
  • 19. Kahraman, C., Ruan, D., & Doǧan, I. (2003). Fuzzy group decision-making for facility location selection. Information Sciences, 157, 135-153.
  • 20. Chen, S. J., & Hwang, C. L. (1992). Fuzzy multiple attribute decision making methods. In Fuzzy multiple attribute decision making (pp. 289-486). Springer, Berlin, Heidelberg.
  • 21. L.A. Zadeh (1965)., Fuzzy sets, Inform. Control 8 (3), 338–353.
  • 22. Zadeh, L. A. (1975). The concept of a linguistic variable and its application to approximate reasoning-I. Information sciences, 8(3), 199-249.
  • 23. Karnik, N. N., & Mendel, J. M. (2001). Operations on type-2 fuzzy sets. Fuzzy sets and systems, 122(2), 327-348.
  • 24. Linda, O., & Manic, M. (2011). Interval type-2 fuzzy voter design for fault tolerant systems. Information Sciences, 181(14), 2933-2950.
  • 25. Jammeh, E. A., Fleury, M., Wagner, C., Hagras, H., & Ghanbari, M. (2009). Interval type-2 fuzzy logic congestion control for video streaming across IP networks. IEEE Transactions on Fuzzy Systems, 17(5), 1123-1142.
  • 26. Mendel, J. M., John, R. I., & Liu, F. (2006). Interval type-2 fuzzy logic systems made simple. IEEE transactions on fuzzy systems, 14(6), 808-821.
  • 27. Buckley, J. J. (1985). Fuzzy hierarchical analysis. Fuzzy sets and systems, 17(3), 233-247.
  • 28. Türk, S., John, R., & Özcan, E. (2014, September). Interval type-2 fuzzy sets in supplier selection. In Computational Intelligence (UKCI), 2014 14th UK Workshop on (pp. 1-7). IEEE.
  • 29. Chan, F. T., & Kumar, N. (2007). Global supplier development considering risk factors using fuzzy extended AHP-based approach. Omega, 35(4), 417-431.
  • 30. Di Martino, F., & Sessa, S. (2014). Type-2 interval fuzzy rule-based systems in spatial analysis. Information Sciences, 279, 199-212.
Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi-Cover
  • ISSN: 1300-1884
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1986
  • Yayıncı: Oğuzhan YILMAZ