Pompa durmasıyla oluşan kararsız akımların deneysel ve teorik olarak araştırılması

Bu çalışmada pompanın duraklaması ile oluşan kararsız akımları teorik ve deneysel olarak araştırılmıştır Basınçlar pompa çıkışında ölçülmüştür. Vana ve dirsek kayıpları değişik debiler için ölçülerek yerel kayıp katsayılarının değerleri doğrudan elde edilmiş ve bu katsayılar için hıza bağlı olarak değişen ampirik bağıntılar türetilmiştir. Teorik sonuçlar, Karakteristikler Yöntemi kullanılarak ve Fortran dilinde yazılmış bilgisayar programı ile elde edilmiştir. Sayısal çözümde memba sınır şartını oluşturan pompanın davranışı boyutsuz parametreler kullanılarak yazılmış yük denge ve hız değişimi denklemleriyle ifade edilmiştir. Deneysel sonuçların teorik sonuçlarla uyumlu olduğu görülmüş olup gözlenen farklılıkların ihmal edilebilir mertebede olması kullanılan yöntem ve yaklaşımların uygun olduğunu göstermektedir.

Theoretical and experimental study of transient flows due to pump shut - off

The aim of this study is to search the unsteady flows due to shut-off of the pump. Pressures have been measured at the immediate outlet of the pump. Valve and elbow head losses were determined for different steady state discharges. Thus, the numerical values and empirical expressions for loss coefficients versus velocities were derived. Numerical results were obtained by computer program written in Fortran language using the method of characteristics. In numerical solution, the pump behavior which constitutes the upstream boundary condition is expressed by means of head balance and speed change equations written in terms of dimensionless parameters. An acceptable agreement is observed between theoretical and experimental results. Since the discrepancy between theoretical and experimental results is negligible, one can deduce that the used method and approaches are convenient.

___

  • 1. Chaudhry, M. H., Applied Hydraulic Transients, Van Nostrand Reinhold Company, USA, 1987.
  • 2. Watters, G.Z., Modern Analysis and Control Of Unsteady Flow in Pipelines, Michigan, Ann Arbor Science, USA, 1979.
  • 3. Koç, A.C., Computation of unsteady flows in hydraulic systems with hydraulic machinery, A Thesis submitted to the graduate school of the natural and applied sciences of Dokuz Eylül University, İzmir, 2001.
  • 4. Donsky, B., "Complete Pump Characteristic and The Effects of Specific Speeds on Hydraulic Transients", Journal of Basic Engineering, ASME, 685-699, 1961.
  • 5. Burmann, W., "Water Hammer in Coaxial Pipe Systems", Journal of Hydraulic Division of ASCE, 101, 6, 699-715, 1975.
  • 6. Streeter, V.L., ve Wylie, E.B., "Transient Analysis of Offshore Loading Systems", Journal of Manufacturing Science and Engineering, 97, (1), 259-265, 1975.
  • 7. Wylie, E. B., ve Streeter, V. L., Fluid Transients, Prentice Hall, USA, 1978.
  • 8. Tullis, J.P., Hydraulics of Pipelines, J. Wiley & Sons Inc., USA,1989.
  • 9. Thorley, A. R. D., "Check Valve Behaviour Under Transient Flow Conditions: A State-of-the- Art Review", Journal of Fluids Engineering, (111), 178-183, 1989.
  • 10. Thorley, A.R.D., Fluid Transients in Pipeline Systems, D&L George Ltd., England, 1991.
  • 11. Wylie,E.B. ve Streeter,V.L., Fluid Transients in Systems, Prentice Hall, USA, 1993
  • 12. Larock, B.E., Jeppson, R.W. ve Watters, G.Z., Hydraulics of Pipeline Systems, CRC Press, USA, 2000.
  • 13. Popescu, M., Arsenie, D. ve Vlase, P.,Applied Hydraulic Transients, A.A. Balkema Publishers, 2003.
  • 14. Rahmeyer, W., "Dynamic Flow Testing of Check Valves", Journal of Nuclear Industry Check Valve Group, Winter meeting, St. Petersburg, Florida, USA, 1996.
  • 15. Kirkland, C., "Controlling and Understanding the Effects of Air in Pipelines", Conference paper, Amiad Australia Pty. Ltd, 1998.
  • 16. Kono, Y., Watanabe, M. ve Ito, T., "Phase Change Analysis in Water Hammer by Upstream Finite Difference Method", Conference Paper, Japan, 1998.
  • 17. Kameswara, R. C. V. ve Eswaran, K., "Pressure Transients in Incompressible Fluid Pipeline Networks", Journal of Nuclear Engineering and Design, 188, 1, 1-11, 1999.
  • 18. Alves, E. G., "Hydraulic Analysis of Sudden Flow Changes in a Complex Piping Circuit", Conference paper, Delaware, USA, 2004.
  • 19. Ward, D., "Automatic and Remotely Controlled Shutoff for Direct Flow Liquid Manure application Systems", 2004.
  • 20. Clark, G. A., Smajstrla, A.G. ve Haman, D.Z., "Water Hammer in Irrigation Systems", Institute of Food and Agricultural Sciences, University of Florida, Gainesville, 2003.
  • 21. Diesselhorst, T. ve Neumann, U., "Optimization of Loads in Piping Systems by the Realistic Calculation Method: Applying Fluid-Structure Interaction (FSI) and Dynamic Friction", Journal of Pressure Vessel Technology, ASME, 127, 1, 1-6, 2005.
  • 22. Kaliatka, A., Uspuras, E. ve Vaisnoras, M., "RELAP5 Code Analysis of Water Hammer Wave Behaviour", Conference Paper, Laboratory of Nuclear Installation Safety, Lithuanian Energy Institute, Kaunas, Lithuania, 2005.
  • 23. Fleming, K.K., Dugandzic, J.P., Le Chevallier, M.W. ve Gullick, R.W., "Susceptibility of Potable Water Distribution Systems to Negative Pressure Transients", Research Project Summary, Division of Science, Research and Technology, Trenton, NJ, USA, 2006.
  • 24. Leishear, R.A., "Dynamic Pipe Stresses During Water Hammer: A Finite Element Approach", Journal of Pressure Vessel Technology, ASME, 129, 2, 226-233, 2007.
  • 25. Mays, L.W., Hydraulic Design Handbook, McGraw-Hill, 1999.