Ön karışımlı benzin dolgusunun HCCI-DI motorunda yanma ve egzoz emisyonlarına etkilerinin incelenmesi

Bu çalışmada, ön karışımlı benzin yakıtının yanma ve egzoz emisyonları üzerine etkileri tek silindirli bir HCCIDI motorunda incelenmiştir. Deneyler motorun maksimum moment devri olan 2200 d/d ve tam yük çalışma şartlarında yapılmıştır. Ön karışımlı benzin yakıt miktarı programlanabilir bir elektronik kontrol ünitesi ile kontrol edilmiş ve düşük basınçlı yakıt enjeksiyon sistemi ile motorun emme havasına püskürtülmüştür. Ön karışımlı benzin yakıtının oranı % 10, % 20 ve % 30 olacak şekilde değiştirilmiş, sonuçlar dizel yakıtı ile karşılaştırılmıştır. Deneysel çalışmalar sonucunda, iki aşamalı yanma (ön karışımlı HCCI yanması ve difuzyon yanması) gözlemlenmiştir. İlk aşama yanma kısmında, silindir içi basınç ve ısı dağılımında artış görülmüştür. İkinci aşama yanma kısmında ise, ön karışımlı benzin yakıtı ile daha düşük difüzyon yanması gerçeklemiştir. Çevrimden çevrime farklılıklar dizel yakıtı ve % 10 ön karışımlı benzin yakıtında oldukça azalmıştır. % 30 ön karışımlı benzin yakıtında duyulabilir miktarda vuruntu gerçeklemiştir. NOx -is zıt eğilim karakteristiği değişmiş ve her iki emisyonda iyileşmeler eş zamanlı olarak sağlanmıştır. Egzoz gaz sıcaklığı % 22 oranında azalırken, NOx ve is emisyonlarında % 16 ve % 65 oranında azalma sağlanmıştır. Diğer yandan HC ve CO emisyonlarında artış görülmüştür.

The investigation of the effects of premixed gasoline charge on HCCI-DI engine combustion and exhaust emissions

In this study, the effects of premixed ratio of gasoline on the combustion and exhaust emissions were investigated in a single-cylinder, HCCI-DI engine. The experiments were performed at the engine speed of 2200 rpm and maximum brake torque operating conditions. The amount of the premixed gasoline was controlled by a programmable electronic control unit (ECU) and the gasoline injection was conducted into the intake air charge using low pressure fuel injection system. The premixed ratio of gasoline was changed 10 %, 20 % and 30 % and results were compared to neat diesel operation. The experimental results show that two stage combustion (premixed HCCI combustion and diffusion combustion) was found. Increasing in-cylinder pressure and heat release was observed in the first stage of combustion. In the second stage of combustion, lower diffusion combustion was occurred with premixed gasoline fuels. Cycle-to-cycle variations were very small with the diesel fuel and 10 % gasoline premixed fuel. Audible knocking occurred with 30 % gasoline premixed fuel ratio. NOxsoot trade-off characteristics were changed and improvements were found simultaneously. NOx and soot emissions were decreased up to 16 % and 65 % respectively, while exhaust gas temperature decreased by 22 %. On the other hand, CO and HC emissions increased.

___

  • 1. Jacobs, T.J., Assanis, D.N., “The attainment of premixed compression ignition low-temperature combustion in a compression ignition direct injection engine”, Proceedings of the Combustion Institute, Cilt 31, 2913-2920, 2007.
  • 2. Alkidas, A.C., “Combustion advancements in gasoline engines”, Energy Conversion and Management, Cilt 48, Sayı 11, 2751-2761, 2007.
  • 3. Baumgarter, C., “Mixture formation in internal combustion engines”, Springer, Heat and Mass transfer series, 253-286, 2006.
  • 4. Tree, D.R., Svensson K.I., “Soot processes in compression ignition engines”, Progress in Energy and Combustion Science, Cilt 33, 272- 309, 2007.
  • 5. Kim, D.S., Kim, M.Y, Lee, C.S., “Reduction of Nitric Oxides and Soot by Premixed Fuel in Partial HCCI Engine”, Journal of Engineering for Gas Turbines and Power, Cilt 128, 497-505, 2006.
  • 6. Ma, J., Lü, X., Ji, L., Huang, Z., “An experimental study of HCCI-DI combustion and emissions in a diesel engine with dual fuel”, Journal of Thermal Sciences, doi:10.1016/j.ijthermalsci.2007.10.007, 2007.
  • 7. Xingcai L., Wei C., Libin J. and Zhen H., “The Effects of External Exhaust Gas Recirculation and Cetane Number Improver on the Gasoline Homogenous Charge Compression Ignition Engines”, Combustion Science and Technology, 178 (2006), 1237–1249.
  • 8. Kim, D.S., Lee, C.S., “Improved emission characteristics of HCCI engine by various premixed fuels and cooled EGR”, Fuel, Cilt 85, 695-704, 2006.
  • 9. Kim, D.S., Kim, M.Y, Lee, C.S., “Combustion and Emission Characteristics of Partial Homogeneous Charge Compression Ignition Engine”, Combustion Science and Technology, Cilt 177, 107-125, 2005.
  • 10. Lee, C.S., Lee, K.H., Kim D.S., “Experimental and numerical study on the combustion characteristics of partially premixed charge compression ignition engine with dual fuel”, Fuel, Cilt 82, 553-560, 2003.
  • 11. Shaver, G.M., Roelle, M.J., Gerdes J.C., “Modeling cycle-to-cycle dynamics and mode transition in HCCI engines with variable valve actuation”, Control Engineering Practise, Cilt 14, Sayı 3, 213-222, 2006.
  • 12. Yeom, K., Jang, J., Bae, C.,“Homogeneous charge compression ignition of LPG and gasoline using variable valve timing in an engine”, Fuel, Cilt 86, Sayı 4, 494-503, 2007.
  • 13. Megaritis, A., Yap, D., Wyszynski, M.L., “Effect of inlet valve timing and water blending on bioethanol HCCI combustion using forced induction and residual gas trapping”, Fuel, Cilt 87, Sayı 6, 732-739, 2008.
  • 14. Iida, M., Hayashi, M., Foster, D.E., Martin, J.K., “Characteristics of homogeneous charge compression ignition (HCCI) engine operation for variations in compression ratio, speed, and intake temperature while using n-butane as a fuel”, Journal of Engineering for Gas Turbines and Power-Transactions of The Asme, Cilt 125, Sayı 2, 472-478, 2003.
  • 15. Shi L., Cui Y., Deng K, Peng H. and Chen Y., “Study of low emission homogeneous charge compression ignition (HCCI) engine using combined internal and external exhaust gas recirculation (EGR)”, Energy, Cilt 31, 2665– 2676, 2006
  • 16. Xingcai, L., Yuchun, H., Linlin, Z., Zhen, H., “Experimental study on the auto-ignition and combustion characteristics in the homogeneous charge compression ignition (HCCI) combustion operation with ethanol/n-heptane blend fuels by port injection”, Fuel, Cilt 85, 2622–2631, 2006.
  • 17. Yap D., Karlovsky J., Megaritis A., Wyszynski M.L., Xu H., “An investigation into propane homogeneous charge compression ignition (HCCI) engine operation with residual gas trapping”, Fuel, 84 (2005), 2372–2379.
  • 18. Morsy, M.H., “Ignition control of methane fueled homogeneous charge compression ignition engines using additives”, Fuel, Cilt 86, Sayı 4, 533-540, 2007.
  • 19. Lü, X., Jia, L., Zua, L., Houa, Y., Huanga, C., Huang, Z., “Experimental study and chemical analysis of n-heptane homogeneous charge compression ignition combustion with port injection of reaction inhibitors”, Combustion and Flame, Cilt 149, Sayı 3, 261-270, 2007.
  • 20. Heywood, J.B., “Internal combustion engines fundamentals”, McGraw-Hill, A.B.D., 1988.
  • 21. Sone, R., “Introduction to Internal Combustion Engines, Palgrave Macmillan, İngiltere, 1999.
  • 22. Tanaka, S., Ayala, F., Keck, J.C., Heywood, J.B., “Two-stage ignition in HCCI combustion and HCCI control by fuels and additives” Combustion and Flame, Cilt 312, Sayı 1-2, 219- 239, 2003.
  • 23. Yamada, H., Suzaki, K., Tezaki, A., Goto Y., “Transition from cool flame to thermal flame in compression ignition process”, Combustion and Flame, Cilt 154, Sayı 1-2, 248-258, 2008.
  • 24. Sjöberg, M., Dec, J.E., “Comparing late-cycle autoignition stability for single- and two-stage ignition fuels in HCCI engines”, Proceedings of the Combustion Institute, Cilt 31, Sayı 2, 2895-2902, 2007.