Kuraklıkla mücadele eden Şanlıurfa ilinde su kullanımının planlanması: Su ayak izi analizleri

Son yıllarda küresel ısınmayla, dünyanın birçok bölgesinde ciddi kuraklıklar yaşanmaktadır. Bu kuraklıklar da su kaynaklarını etkilemektedir. Bu nedenle su kaynaklarının sürdürülebilir yönetimi için literatürde birçok çalışma yapılmıştır. Su ayak izi (SA) analizleri de literatüre kazandırılmış yeni bir parametredir. Bir bölge ya da herhangi bir ürün için su ayak izi kavramı; üretim aşamaları sırasında direkt veya dolaylı olarak kullanılan veya kirletilen su miktarı demektir. Bu çalışma, kuraklığın etkili olduğu ve Türkiye’de en önemli tarım merkezlerinden biri olan Şanlıurfa ilinde detaylı SA analizleri yaparak su kullanımının planlanmasını amaçlamaktadır. Bu amaçla 2009-2019 yılları arasında 11 yılın alansal yağış ortalamaları kullanılarak, bölgede yetiştirilen 45 tarım ürününün her birinin yeşil ve mavi su ayak izi analizleri yapılmıştır. Buna ek olarak bölgede hayvancılık, evsel ve endüstriyel tüketim SA analizleri de yapılarak ilin toplam ortalama SA değeri 8,01 milyar m3/yıl bulunmuştur. İldeki su kaynaklarının %91’lik kısmının tarım ürünlerinin yetiştirilmesinde kullanıldığı belirlenmiştir. Mevcut temiz suyun %64’lük kısmı mavi su kaynaklarından karşılandığı, kurak sezonda bu oranın %66’ya kadar çıktığı belirlenmiştir. Daha rasyonel planlama yapabilmek için önemli tarım ürünlerinin sanal su muhtevaları hesaplanmış ve ürünlerin ekonomik değeri ile karşılaştırılıp, tartışılmıştır. Türkiye’deki ilk SA analizleri arasında olan bu çalışma, su kaynaklarının planlanması ve iklim değişikliğine uyum kapsamında önemlidir.

Planning the use of water in Şanlıurfa province, which struggles with drought: Water footprint analysis

In recent years, severe droughts caused by global warming have been experienced in many places of the world. These droughts also affect the water resources. Because, many studies have been done for the sustainability of water use in the literature. Water footprint (WF) analysis is also a new concept that has been added to the literature. Water footprint concept for a region or any product, indicates the amount of water used or contaminated in the production stages. The aim of this article is to plan the water use by making detailed WF analysis in Şanlıurfa where is effective drought and which is an important agricultural centers in Turkey. For this purpose, green and blue water footprints for 45 agricultural products growing in the work area were analyzed by using the areal rainfall averages of 11 years between 2009 and 2019. In addition, the average total WF value of the region was found as 8.01 billion m3 /year by making WF analysis for livestock, industrial and domestic water use in the work area. It was understood that, 91% of underground and surface water resources in the province are used in the cultivation of agricultural products. It was determined that, 64% of the available freshwater is met from blue water resources, and this rate reaches up to 66% in the dry season. For more rational planning, the virtual water contents of important agricultural products were also calculated and compared with the economic value of these products. This study which is among the first WF analysis in Turkey is necessary for planning water resources and adaptation to climate chang

___

  • 1. Albostan A., Önöz B., Wavelet application approach on the chaotic analysis of dialy river discharge, Journal of the Faculty of Engineering and Architecture of Gazi University, 30 (1), 39-48, 2015.
  • 2. Tunç Dede Ö., Sezer M., The application of Canadian water quality index (CWQI) model for the assessment of water quality of Aksu creek, Journal of the Faculty of Engineering and Architecture of Gazi University, 32 (3), 909-917, 2017.
  • 3. Tunc Dede O., Telci İ.T., Aral M.M., The Use of Water Quality Index Models for the Evaluation of Surface Water Quality: A Case Study for Kirmir Basin, Ankara, Turkey, Water Quality Exposure and Health, 5,41-56, 2013.
  • 4. Güvel Ş.P., Yurtal Recep, İnvestigation of sedimentation effects on Seyhan Dam reservoir, Journal of the Faculty of Engineering and Architecture of Gazi University, 35 (2), 1015-1025, 2020.
  • 5. Batan M., Global climate change and inevitable conclusions, PhD Thesis, Dicle University, Institute of Natural and Applied Sciences, Diyarbakır, 2014.
  • 6. Gümüş V., Başak A., Oruç N., Drought Analysis of Şanlıurfa Station with Standard Precipitation Index (SPI), Harran Univercity Journal of Engineering, 1 (1), 36-44, 2016.
  • 7. Batan M., Toprak Z.F., Financial Comparison of the Kyoto Protocol Obligations and the Natural Disaster Losses, Batman University Journal of Life Sciences, 7 (2/2),180-189, 2017.
  • 8. Toprak Z.F., Hamidi N., Toprak Ş., Şen, Z., Climatic identity assessment of the climate change.Int. J. Global Warming. 5(1),30-45,2013.
  • 9. Dönmez S., Assessing Akşehir Lake’s recession using meteorological and Earth observation data, Journal of the Faculty of Engineering and Architecture of Gazi University, 33 (1), 177-188, 2018.
  • 10. Sener E., Davraz A., Sener S., Investigation of Akşehir and Eber Lakes (SW Turkey) coastline change with multitemporal satellite images. Water Resour. Manage. 24, 727-745. 2010.
  • 11. Dişli M., Akkurt F., Alıcılar A., Evaluation on water quality of Şanlıurfa Fish Lake concerning with physical parameters, Journal of the Faculty of Engineering and Architecture of Gazi University, 19 (3), 287-294, 2013.
  • 12. Novoa V., Ahumada-Rudolph R., Rojas O., Munizaga J., Sáez K., Arumí J.L., Sustainability assessment of the agricultural water footprint in the Cachapoal River basin, Chile, Ecological Indicators, 98, 19-28,2019.
  • 13. Russo, T., Alfredo, K., Fisher, J., Sustainable water management in urban, agricultural, and natural systems. Water 6 (12), 3934-3956,2014.
  • 14. Aküzüm T., Çakmak B., Gökalp Z., Evaluation of Water Resources Management in Turkey, İnternational Journal of Agricultural and Natural Sciences, 3 (1),67-74,2010.
  • 15. Dumont A., Salmoral G., Llamas M.R., The water footprint of a river basin with a special focus on groundwater: The case of Guadalquivir basin (Spain), Water Resources and Industry, 1 (2), 60-76, 2013.
  • 16. Johnson M.B., Mehrvar M., An assessment of the grey water footprint of winery wastewater in the Niagara Region of Ontario, Canada, Journal of Cleaner Production, 214, 623-632, 2019.
  • 17. Hoekstra A.Y., Chapagain A.K., Aldaya M.M., Mekonnen M.M., The Water Footprint Assessment Manual, Water Footprint Network. 2011.
  • 18. Ercin A.E., Hoekstra A.Y., Water footprint scenarios for 2050: A global analysis, Environment International, 64, 71-82, 2014.
  • 19. Quinteiro P., Rafael S., Villanueva-Rey P., Ridoutt B., Lopes M., Arroja L., et al., A characterisation model to address the environmental impact of green water flows for water scarcity footprints, Science of The Total Environment, 626, 1210-1218, 2018.
  • 20. Muratoglu A., Water footprint assessment within a catchment: A case study for Upper Tigris River Basin, Ecological Indicators, 106, 105467, 2019.
  • 21. Bakanoğulları F., Analysis of Drought Intensity Using SPEI and SPI Indices in Damlıca Watershed-İstanbul, Turkey, Soil Water Journal, 9 (1),1-10,2020.
  • 22. Veettil A.V., Mishra A.K., Potential influence of climate and anthropogenic variables on water security using blue and green water scarcity, Falkenmark index, and freshwater provision indicator, Journal of EnvironmentalManagement, 228,346-362,2018.
  • 23. Vanham D., A holistic water balance of Austria - How does the quantitative proportion of urban water requirements relate to other users?, Water Science and Technology, 66 (3), 549-555, 2012.
  • 24. Muratoğlu A., Assessment of water footprint of production: A case study for Diyarbakır province, Journal of the Faculty of Engineering and Architecture of Gazi University, 35 (2), 845-858, 2020.
  • 25. Hoekstra A.Y., Hung P.Q., A quantification of virtual water flows between nations in relation to international crop trade, Water Research, 49 (11), 203–209, 2002.
  • 26. Chapagain A.K., Hoekstra A.Y., Water footprint of nations. Volume 1 : Main report, Value of Water Research Report Series, 1 (16), 1-80, 2004.
  • 27. Hoekstra A.Y., Chapagain A.K., Water footprints of nations: Water use by people as a function of their consumption pattern, Water Resources Management, 21 (1), 35-48, 2006.
  • 28. Mekonnen M.M., Hoekstra A.Y., A global and highresolution assessment of the green, blue and grey water footprint of wheat, Hydrology and Earth System Sciences, 14 (7), 1259-1276, 2010.
  • 29. Aldaya M.M., Llamas M.R., Water footprint analysis of the Guadiana river basin, Unesco-IHE 2008.
  • 30. Muratoglu A., Water Footprint Analysis of Tigris River Basin, 1st İnternational Potable Water and Waste Water Symposium, Afyon-Turkey, 475-487 6-7 December, 2018.
  • 31. Ekinci B., Sample Country Practices for Efficient Use of Water Resources and Applicability of These Studies in Our Country, Master Thesis, Republic of Turkey Ministry of Agriculture and Forestry, Ankara, 2015.
  • 32. Hu T., Huang K., Yu Y., Zhang X., Xu Y., Wang X., Measuring Water Footprint on a Lake Basin Scale: A Case Study of Lake Dianchi, China, Clean - Soil, Air, Water, 44 (10), 1296-1305, 2016.
  • 33. Kinouchi T., Nakajima T., Mendoza J., Fuchs P., Asaoka Y., Water security in high mountain cities of the Andes under a growing population and climate change: A case study of La Paz and El Alto, Bolivia, Water Security, 6, 100025, 2019.
  • 34. Batan M. ve Toprak Z.F., Positive effects of global climate change and the assessment in adaptation to climate change, Dicle University, Journal of Engineering, 6 (2), 93-102, 2015.
  • 35. Önen F., Aslan B., Hamidi N., Diyarbakır drinking water needs modeling with gene expression programming, Dicle University, Journal of Engineering, 9 (2), 859-870, 2018.
  • 36. TUİK, Turkish Statistical Institute, http://www.tuik.gov.tr/Start.do. Erişim tarihi Haziran 25, 2020.
  • 37. Oruç N., Drought Analysis of The SoutheastAnatolia Region, Master Thesis, Pamukkale University, Institute of Science, Denizli, 2017.
  • 38. Keskiner A. D., Çetin M., Akın S., Şimşek M., Analysis of Climate Type Tendencies by Using Erinç Drought Index Method: An Application to Southeastern Anatolia Project (GAP) Area, 10th National Hydrology Congress, Mugla-Turkey, 403-415, 9-12 October 2019.
  • 39. Benek S., Şahinalp M.S., Elmastaş N.,Challenges arosen by irrigation facilities in terms of land use in Şanlıurfa province, V. National Geography Symposium, Ankara, 61-71, 16-17 October, 2008.
  • 40. Municipality of Sanliurfa, Economic structure, https://www.sanliurfa.bel.tr/icerik/14/2/ekonomik-yapi, Date of access, June 18, 2020.
  • 41. Mekonnen M.M., Hoekstra A.Y., The green, blue and grey water footprint of crops and derived crop products, Hydrology and Earth System Sciences, 15 (5), 1577- 1600, 2011.
  • 42. Mekonnen M.M., Hoekstra A.Y., National water footprint accounts: The green, blue and grey water footprint of production and consumption, Volume 1: Main report, UNESCO-IHE Institute for Water Education, Delfth, The Netherlands, 2011.
  • 43. Pegram G., Conyngham S., Aksoy A., Dıvrak B.B., Öztok D., The Water Footprint Report on Turkey: Water, Production, İnternational Trade Relationship, WWF 2014.
  • 44. Avanoz Z., Assessment of Water Footprint of Crop Production in Turkey, Master Thesis, Batman University, The Graduate School of Natural and Applied Science of Batman University Batman, 2020.
  • 45. Zhuo L., Mekonnen M.M., Hoekstra A.Y., Sensitivity and uncertainty in crop water footprint accounting: A case study for the Yellow River basin, Hydrology and Earth System Sciences, 18 (6), 2219–2234, 2014.
  • 46. Hoff H., Döll P., Fader M., Gerten D., Hauser S., Siebert S., Water footprints of cities indicators for sustainable consumption and production, Hydrology and Earth System Sciences, 18, 213-226, 2014.
  • 47. Vanham D., Bidoglio G., The water footprint of Milan, Water Science and Technology, 69 (4), 789-795, 2014.
  • 48. Manzardo A., Loss A., Fialkiewicz W., Rauch W., Scipioni A., Methodological proposal to assess the water footprint accounting of direct water use at an urban level: A case study of the Municipality of Vicenza, Ecological Indicators, 69, 165–175, 2016.
  • 49. A.J. Péreza, J. Hurtado-Patiñoa, H.M. Herrerab, A.F. Carvajala, M.L. Pérezc, E.Gonzalez-Rojasa, J. PérezGarcía, Assessing sub-regional water scarcity using the groundwater footprint, Ecological Indicators, 96, 32-39, 2019.
  • 50. Xu M., Li C., Wang X., Cai Y., Yue W., Optimal water utilization and allocation in industrial sectors based on water footprint accounting in Dalian City, China, Journal of Cleaner Production, 176, 1283-1291, 2018.
  • 51. Zhang F., Zhan J., Li Z., Jia S., Chen S., Impacts of urban transformation on water footprint and sustainable energy in Shanghai, China, Journal of Cleaner Production, 190, 847–853, 2018.
  • 52. Zhao X., Tillotson M.R., Liu Y.W., Guo W., Yang A.H., Li Y.F., Index decomposition analysis of urban crop water footprint, Ecological Modelling, 348, 25–32, 2017.
  • 53. Cai B., Liu B., Zhang B., Evolution of Chinese urban household’s water footprint, Journal of Cleaner Production, 208, 1-10, 2019.
  • 54. Dursun, N., Determination of the Water Footprint of the Staff and Students and Yenisey Campus of Ardahan University, Erzincan University, Journal of Science and Technology, 12 (3),1526-1536, 2019.
  • 55. Municipality of Sanliurfa, Climate, https://www. sanliurfa.bel.tr/icerik/22/2/iklim, Date of access , June 15, 2020.
  • 56. Governorship of Sanliurfa, General information, http://www.sanliurfa.gov.tr/genel-bilgiler, Date of access, June 22, 2020.
  • 57. İnternet..Resource, https://tr.pinterest. com/pin/ 303007881186536921/ , Date of access, July 16, 2021.
  • 58. MGM, Turkish State Meteorological Service, Analyses, https://www.mgm.gov.tr/. Date of access, June 28, 2020.
  • 59. Benek S., Agricultural Structure, Problems Of Province Of Şanlıurfa And Recommendations, Turkish Journal Geographical Sciences , 4 (1), 67-91, 2006.
  • 60. Turkish State, Ministry of Environment and Urbanism, Directorate Environment andUrbanism of Sanliurfa province, Sanliurfa Province Environmental Status Report 2017, 2018.
  • 61. FAO, CLIMWAT 2.0, Food and Agricultural Organization of the United Nations, http://www.fao.org/land-water/databases and software/climwat-for-cropwat/en/. Date of access June 10, 2020.
  • 62. TAGEM, DSI, Plant water consumption guide of irrigated plant in Turkey, Turkish General Directorate of Agricultural Research and Policies, Turkish General Directorate of State Hydraulic Works, Ankara, 2017.
  • 63. Ran Y., Lannerstad M., Herrero M., Van Middelaar C.E., De Boer I.J.M., Assessing water resource use in livestock production: A review of methods, Livestock Science, 187, 68–79, 2016.
  • 64. FAO, Food and Agricultural Organization of the United Nations, http://www.fao.org/home/en/. Date of access, June 10, 2020.
  • 65. FAO, Crop Water Information, http://www.fao.org/ land-water/databases-and software/crop-information /en/. Date of access, June 16, 2020.
  • 66. Mekonnen M.M., Hoekstra A.Y., A global assessment of the water footprint of farm animal products, Ecosystems, 15 (3), 401–415, 2012.
  • 67. NASS, National Agricultural Statistics Service Website,https://www.nass.usda.gov/Charts_and_Maps/ Agricultural_Prices, Date of access, December 8, 2020.
  • 68. GTB, Gaziantep Commodity Exchange Website, https://www.gtb.org.tr/yillik-bulten?tarih=2019, Date of access, December 9, 2020.
  • 69. Hoekstra A.Y., The water footprint of industry, Assessing and Measuring Environmental Impact and Sustainability. Butterworth-Heinemann, 2015.
  • 70. Postel S.L., Daily G.C., Ehrlich P.R., Human Appropriation of Renewable Fresh Water, Science, 271 (5250), 785-788, 1996.
  • 71. FAO, CropWat 8.0 Model, Food and Agricultural Organization of the United Nations, http://www.fao.org/land-water/databases-andsoftware/cropwat/en/. Date of Access, June 15, 2020.
  • 72. Allen, R.G., Pereira,L.S.,Raes, D., and Smith, M. Crop evapotranspiration Guidelines for computing crop water requirements FAO Irrigation and drainage, 56, 174, 1998.
  • 73. USDA-SCS, Chapter:2 Irrigation Water Requirements, Part 623 National Engineering Handbook, 284, 1993.
  • 74. Hoekstra A.Y., The hidden water resource use behind meat and dairy, Animal Frontiers, 2 (2), 3–8, 2012.
  • 75. Fu Y., Zhao J., Wang C., Peng W., Wang Q., Zhang C., The virtual Water flow of crops between intraregional and interregional in mainland China, Agricultural Water Management, 208, 204-213, 2018.
  • 76. Ercin A.E., Governance of globalized water resources: The application of water footprint to inform corporate strategy and government policy, PhD Dissertation, University of Twente, Institute for Water Education, Netherlands, 2012.
  • 77. MGM, Turkish State Meteorological Service, Hydrometeorology Branch Office, https://mgm. gov.tr/eng /forecast-cities.aspx, Date of accesss, June 12, 2020.
Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi-Cover
  • ISSN: 1300-1884
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1986
  • Yayıncı: Oğuzhan YILMAZ