Teknoloji yol haritalarını arttırmak için tip-2 bulanık sistemler temelli yeni bir yaklaşım

İş dünyasında Ar-Ge ve inovasyon çıktılarının önemi her geçen artmaktadır. Ar-Ge ve inovasyon faaliyetlerinin teknoloji ve strateji ile uyumu sürdürülebilir başarının önemli güvencelerinden biridir. Bu aşamada Ar-Ge ve inovasyon faaliyetlerini yönlendiren ve yaygın bir şekilde kullanılan teknoloji yol haritaları ilk akla gelmektedir. Teknoloji yol haritaları, teknoloji gelişimi ve değişimini ilgili diğer katmanlarla (ürünler, hizmetler, pazar vb.) ilişkilendiren ve karar vermeye yardımcı olan araçlardır. Geçerli bir teknoloji yol haritası elde edebilmek için ögeler arası ilişkilerin doğru tanımlanması gerekir. Bu çalışma teknoloji yol haritası ögeleri arasındaki ilişkiler için bir infografik önermektedir. Öge ikililerinin ilişki derecesi ve ilişkilerin önem derecesi aralıklı tip-2 bulanık sistemler (IT2FS) kullanılarak değerlendirilmektedir. Bu değerlendirme sonuçlarını kullanarak oluşturulan infografik ile teknoloji yol haritaları zenginleştirilmektedir. Önerilen sürecin daha iyi anlaşılması için üç boyutlu (3D) yazıcı teknolojileri uygulama örneği sunulmuştur. Bu şekilde zenginleştirilmiş teknoloji yol haritalarının özellikle büyük ölçekli sistemlerde strateji oluşturma sürecine ve teknoloji yönetim faaliyetlerine katkı sağlayacağı düşünülmektedir.

A novel approach based on type-2 fuzzy sets to augment technology roadmaps

The importance of RDI outputs is increasing day by day in the business world. The harmony of RDI activities with technology and strategy is one of the important guarantees of sustainable success. At this stage, widely used “technology roadmaps” directing RDI activities come to mind first. Technology roadmaps are the tools linking technological developments and changes with other relevant layers (products, services, market, etc.), and thus they assist decision making. To obtain a valid technology roadmap, its inter-element relationships need to be well-established. This study proposes an infographic for the relationships between technology roadmap elements. Importance of the relationships and the relationship degree of element pairs are evaluated by using interval type-2 fuzzy systems (IT2FS). Technology roadmaps are augmented with the infographic employing these evaluation results. In order to illustrate how the proposed process executes, a technology roadmap of three-dimensional (3D) printer technologies is presented as an example. It is considered that these augmented technology roadmaps contribute to strategy planning and technology management, especially for large-scale cases.

___

  • 1. Willyard C.H., McClees C.W., Motorola’s technology roadmap process, Research Management, 30 (5), 13–19, 1987.
  • 2. Garcia M.L., Bray O.H., Fundamentals of technology roadmapping, Albuquerque: Sandia National Laboratories, New Mexico, 1997.
  • 3. Bloem S.L., Vasconcellos E., Guedes L.V., Guedes L.F.A., Costa R.M., Technology roadmapping: A methodologic proposition to refine Delphi results, Technological Forecasting and Social Change 126, 194-206, 2018.
  • 4. Daim T.U., Yoon B.S., Lindenberg J., Grizzi R., Estep J., Oliver T., Strategic roadmapping of robotics technologies for the power industry: A multicriteria technology assessment, Technological Forecasting and Social Change 131, 49-66, 2018.
  • 5. Amer M., Daim T.U., Jetter A., Technology roadmap through fuzzy cognitive map based scenarios: The case of wind energy sector of a developing country, Technology Analysis & Strategic Management 28 (2), 131-155, 2016.
  • 6. Winkowski C., Technology development roadmaps: A bibliometrics analysis of scientific literature, European Research Studies Journal 23 (2), 2020.
  • 7. EIRMA, Technology roadmapping – delivering business vision, Working group report, European Industrial Research Management Association, Paris, No. 52, 1997.
  • 8. Phaal R., Farrukh C.J., Probert, D.R., Technology roadmapping – A planning framework for evolution and revolution, Technological Forecasting and Social Change 71 (1-2), 5-26, 2004.
  • 9. Valerio K.G.O., Silva C.E.S., Neves S.M., Overview on the technology roadmapping (TRM) literature: Gaps and perspectives, Technological Analysis & Strategic Management, 2020. https://doi.org/10.1080/09537325.2020.1787976
  • 10. Geum Y., Lee S., Park Y., Combining technology roadmap and system dynamics simulation to support scenario-planning: A case of car-sharing service, Computers & Industrial Engineering 71, 37–49, 2014.
  • 11. Yoon B., Phaal R., Structuring technological information for technology roadmapping: Data mining approach, Technology Analysis & Strategic Management 25, 1119–1137, 2013.
  • 12. Strauss J.D., Radnor M., Roadmapping for dynamic and uncertain environments, Research-Technology Management, 47 (2), 51–58, 2004.
  • 13. Fenwick D., Daim T.U., Gerdsri N., Value driven technology roadmapping (VTRM) process integrating decision making and marketing tools: Case of internet security technologies, Technological Forecasting and Social Change 76 (8), 1055–1077, 2009.
  • 14. Caetano M., Amaral D.C., Roadmapping for technology push and partnership: A contribution for open innovation environments, Technovation 31 (7), 320–335, 2011.
  • 15. Vishnevskiy K., Karasev O., Meissner D., Integrated roadmaps and corporate foresight as tools of innovation management: The case of Russian companies, Technological Forecasting and Social Change 90, 433–443, 2015.
  • 16. Toro-Jarrin M.A., Ponce-Jaramillo I., Guemes-Castorena D., Methodology for the of building process integration of business model canvas and technological roadmap, Technological Forecasting and Social Change 110, 213–225, 2016.
  • 17. Son H., Kwon Y., Park S., Lee S., Using a design structure matrix to support technology roadmapping for product–service systems, Technology Analysis & Strategic Management 30 (3), 337-350, 2018.
  • 18. Warfield J.N., Binary matrices in system modeling, IEEE Transactions on systems, man and cybernetics SMC 3 (5), 441–449, 1973.
  • 19. Son W., Lee S., Integrating fuzzy-set theory into technology roadmap development to support decision-making, Technology Analysis & Strategic Management 31(4), 447-461, 2019.
  • 20. Dereli T., Altun K., Technology evaluation through the use of interval type-2 fuzzy sets and systems, Computers & Industrial Engineering, 65 (4), 624-633, 2013.
  • 21. Hagras H., A hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots, IEEE Trans. on Fuzzy Systems 12, 524–539, 2004.
  • 22. Hagras H., Type-2 FLCs: A new generation of fuzzy controllers, IEEE Computational Intelligence Magazine 2 (1), 30–43, 2007.
  • 23. Mendel J.M., Uncertain rule-based fuzzy logic systems: Introduction and new directions, Upper Saddle River, NJ, Prentice-Hall, 2001.
  • 24. Wu D., Tan W.W., Genetic learning and performance evaluation of type-2 fuzzy logic controllers, Engineering Applications of Artificial Intelligence 19 (8), 829–841, 2006.
  • 25. Dereli T., Baykasoğlu A., Altun K., Durmuşoğlu A., Türkşen İ.B., Industrial applications of type-2 fuzzy sets and systems: A concise review, Computers in Industry 62 (2), 125–137, 2011.
  • 26. Mendel J.M., Wu D., Perceptual computing: Aiding people in making subjective judgements, IEEE Press Series on Computational Intelligence, 2010.
  • 27. Huang C.Y., Lin Y.C., Yang C.L., Sun Y., Cheng J.C., Kuo Y.T., Wang L.C., Wang S.Y., Hsu H.E., Hsu H.H., A fuzzy MOP based competence set expansion method for technology roadmap definitions, Knowledge Innovation Through Intelligent Software Methodologies, Tools and Techniques (Ed. Fujita H.), IOS Press, 2020.
  • 28. Son C., Kim J., Kim Y., Developing scenario-based technology roadmap in the big data era: A utilization of fuzzy cognitive map and text mining techniques, Technology Analysis & Strategic Management 32 (3), 272-291, 2020.
  • 29. Lai C., Xu L., Shang J., Optimal planning of technology roadmap under uncertainty, Journal of the Operational Research Society 71 (4), 673-686, 2020.