Karanlık fermentasyon ile patates besi ortamından biyohidrojen üretimi için uygun işletim koşullarının belirlenmesi ve kinetik analizi

Bu çalışmada çalkalama hızı, mikroorganizma aşı oranı, başlangıç substrat derişimi ve inkübasyon sıcaklığınınkaranlık fermentasyon ile biyohidrojen üretimine etkisi incelenmiştir. En uygun parametreler, çalkalama hızı 200devir/min, mikroorganizma aşı oranı 1:10 v/v, başlangıç substrat derişimi 32,4 g KOİ/L ve sıcaklık 37°C olarakbelirlenmiştir. Bu koşullarda 1257 mL H2 üretimi, 17,06 mL H2/ g KOİ verimi ve 6,441 mL H2/L.min maksimumH2 üretim hızı bulgularına ulaşılmıştır. Elemanter tepkime hız modeli için mertebe 1, hız sabitleri ise 28°C ve 37°Csıcaklıklar için sırasıyla 6,5x10-5 min-1 ve 7,92x10-5 min-1 olarak hesaplanmıştır. Arrhenius sabiti 9,74x1034 min-1ve aktivasyon enerjisi 229,20 kJ/mol olarak hesaplanmıştır. Michaelis-Menten modeli ile maksimum H2 üretimhızları 28°C ve 37°C sıcaklıklar için sırasıyla 11,47 mL H2/L.min ve 74,66 mL H2/L. min, bu sıcaklıklar içinMichaelis sabitleri sırasıyla 181,9 g KOİ/L ve 447,7 g KOİ/L, R2 değerleri ise 0,9458 ve 0,9505 olarakhesaplanmıştır. Modifiye Gompertz modeli ile R2 değerleri tüm çalışmalar için 0,99’dan büyük olarak elde edilmiş,en yüksek H2 üretimi potansiyelleri, 32,4 g KOİ/L başlangıç substrat derişiminde, 28°C ve 37°C sıcaklıklar içinsırasıyla 2,126 L H2/L ve 2,777 L H2/L olarak bulunmuş, en yüksek H2 üretim hızına 15,250 mL H2/L.min olarak37°C sıcaklık ve 27 g KOİ/L başlangıç substrat derişiminde ulaşılmıştır.

Determination of suitable operating conditions for biohydrogen production from potato production medium by dark fermentation and kinetic analysis

In this work, effects of agitation speed, inoculum ratio, initial substrate concentraion and incubation temperature were investigated for anaerobic biohydrogen production. The most suitable parameters were determined as agitation speed 200 rpm, microorganism inoculum ratio 1:10 v/v, initial substrate concentration 32.4 g COD/L and temperature 37°C. Under these conditions, 1257 mL H2 production, 17.06 mL H2/g COD yield and 6.441 mL H2/L maximum H2 production rate was reached. For first order elementary reaction rate model, reaction rate constants were calculated as 6.5x10-5 min-1 and 7.92x10-5 min-1 for temperatures of 28°C and 37°C, respectively. Arrhenius constant and activation energy were calculated as 9.74x1034 min-1 and 229.20 kJ/mol respectively. For MichaelisMenten model, maximum H2 production rates, Michaelis constants and R2 values were calculated as 11.47 mL H2/L.min, 74.66 mL H2/L.min, 181.9 g COD/L, 447.7 g COD/L and 0.9458, 0.9505 for 28ºC and 37°C temperatures, respectively. Using modified Gompertz model, all R2 values were obtained greater than 0.99, maximum H2 production potentials were found as 2.126 L H2/L, 2.777 L H2/L at 28°C and 37°C with 32.4 g COD/L, respectively. Maximum H2 production rate was reached as 15.250 mL H2/L.min at 37°C and 27 g COD/L initial substrate concentration.

___

  • Kim D. ve Han S., Effect of gas sparging on continuous fermentative hydrogen production, Int. J. Hydrogen Energy, 31, 2158-2169, 2006.
  • Liu G. ve Shen J., Effect of culture and medium conditions on hydrogen production from starch using anaerobic bacteria, J. Biosci. Bioeng., 98 (4), 251-256, 2004.
  • Özkan G., Özkan G., Şahbudak B., The effect of water/ethanol mol ratio to H2 yield and selectivity for hydrogen production from reforming of ethanol with the Pd-NiO, Ni-Cu-Pd/activated carbon catalysts, Journal of the Faculty of Engineering and Architecture of Gazi University, 31 (2), 417-424, 2016.
  • Melikoglu M. ve Albostan A., Bioethanol production and potential of Turkey, Journal of the Faculty of Engineering and Architecture of Gazi University, 26 (1), 151-160, 2011.
  • Gulum M., Bilgin A., Cakmak A., Comparison of optimum reaction parameters of corn oil biodiesels produced by using sodium hydroxide (NaOH) and potassium hydroxide (KOH), Journal of the Faculty of Engineering and Architecture of Gazi University, 30 (3), 503-511, 2015.
  • Erdem F., Tosun A., Ergun M., Biosorption of Remazol Yellow (RR) by Saccharomyces cerevisiae in a batch system, Journal of the Faculty of Engineering and Architecture of Gazi University, 31 (4), 971-978, 2016.
  • Uyar B., Eroglu I., Yücel M., Gündüz U., Photofermentative hydrogen production from volatile fatty acids present in dark fermentation effluents, Int. J. Hydrogen Energy, 34 (10), 4517-4523, 2009.
  • Mizuno O., Dinsdale R., Hawkes F., Hawkes D., Noike T., Enhancement of hydrogen production from glucose by nitrogen gas sparging, Bioresour. Technol., 73, 59- 65, 2000.
  • Alhamdani Y.A., Hassim M.H., Ng R.T.L., Hurme M., The estimation of fugitive gas emissions from hydrogen production by natural gas steam reforming, Int. J. Hydrogen Energy, 42 (14), 9342-9351, 2017.
  • Ozyurt B., Hitit Z.Y., Ertunc S., Hapoglu H., Akay B., Demirtas G.F., Biological hydrogen production: effects of inoculation and production media, International Journal of Global Warming, 6 (2-3), 350-365, 2014.
  • Nath K., Muthukumar M., Kumar A., Das D., Kinetics of two stage fermentation process for the production of hydrogen, Int. J. Hydrogen Energy, 33 (4), 1195–1203, 2008.
  • Das D. ve Veziroglu T.N., Advances in biological hydrogen production processes, Int. J. Hydrogen Energy, 33 (21), 6046-6057, 2008.
  • Hitit Z.Y., Boyacioglu H., Ozyurt B., Ertunc S., Hapoglu H., Akay B., Self-tuning GMV control of glucose concentration in fed-batch baker’s yeast production, Appl. Biochem. Biotechnol., 172 (8), 3761- 3775, 2014.
  • Hallenbeck P.C., Abo-Hashesh M., Ghosh D., Strategies for improving biological hydrogen production, Bioresour. Technol., 110, 1-9, 2012.
  • Genç N., Fermentatif biyohidrojen üretim proseslerinde hidrojen veriminin geliştirilmesindeki yaklaşımlar, Erciyes Üniversitesi Fen Bilimleri Enstitüsü Yayınları, 26 (3), 225-239, 2010.
  • Hitit Z.Y., Lazaro C.Z., Hallenbeck P.C., Hydrogen production by co-cultures of Clostridium butyricum and Rhodospeudomonas palustris: Optimization of yield using response surface methodology, Int. J. Hydrogen Energy, 42 (10), 6578–6589, 2017.
  • Pirt J.S., Principles of Microbe and Cell Cultivation, John Wiley & Sons, New York, A.B.D., 1976.
  • Hallenbeck P.C., Ghosh D., Improvements in fermentative biological hydrogen production through metabolic engineering, J. Environ. Manage., 95, 360- 364, 2012.
  • Jackson A.T., Process Engineering in Biotechnology, Prentice Hall, New Jersey, A.B.D., 1991.
  • Jones D.T. ve Woods, D.R., Acetone-butanol fermentation revisited, Microbiological Reviews, 50 (4), 484-524, 1986.
  • Gorwa M.F., Croux C., Soucaille P., Molecular characterization and transcriptional analysis of the putative hydrogenase gene of Clostridium acetobutylicum ATCC 824, J. Bacteriol., 178 (9), 2668- 2675, 1996.
  • Nath K. ve Das D., Modeling and optimization of fermentative hydrogen production, Bioresour. Technol., 102 (18), 8569-8581, 2011.
  • Abo-Hashesh M., Wang R., Hallenbeck P.C., Metabolic engineering in dark fermentative hydrogen production; theory and practice, Bioresour. Technol., 102 (18), 8414-8422, 2011.
  • Chandrasekhar K., Lee Y.J., Lee D.W., Biohydrogen production: strategies to improve process efficiency through microbial routes, Int. J. Mol. Sci., 16 (4), 8266- 8293, 2015.
  • Wang X., Ding J., Guo W.Q., Ren N.Q., A hydrodynamics–reaction kinetics coupled model for evaluating bioreactors derived from CFD simulation. Bioresour. Technol., 101 (24), 9749-9757, 2010.
  • Acikel Y.S., Ersan M., Acikel U., Effects of stirring and aeration rates on lipase production and growth of R. Delemar in the media containing glucose or molasses sucrose and PFC, Journal of the Faculty of Engineering and Architecture of Gazi University, 28 (4), 811-818, 2013.
  • Li Z., Wang H., Tang Z., Wang X, Bai J., Effects of pH value and substrate concentration on hydrogen production from the anareobic fermentation of glucose, Int. J. Hydrogen Energy, 33, 7413–7418, 2008.
  • Reddy K., Nasr M., Kumari S., Kumar S., Gupta S.K., Enitan A. M., Bux F., Biohydrogen production from sugarcane bagasse hydrolysate: effects of pH, S/X, Fe2+, and magnetite nanoparticles, Environ. Sci. Pollut. Res., 24 (9), 8790-8804, 2017.
  • Laurinavichene T.V., Belokopytov B.F., Laurinavichius K.S., Tekucheva D.N., Seibert M., Tsygankov A.A., Towards the integration of dark-and photo-fermentative waste treatment. 3. Potato as substrate for sequential dark fermentation and light-driven H2 production, Int. J. Hydrogen Energy, 35 (16), 8536-8543, 2010.
  • Xie B., Cheng J., Zhou J., Song W., Liu J., Cen K., Production of hydrogen and methane from potatoes by two-phase anaerobic fermentation, Bioresour. Technol., 99 (13), 5942-5946, 2008.
  • Yılmaz Ö., Patates atığından termokimyasal gazlaştırma ile hidrojen üretimi ve modellenmesi, Doktora Tezi, Anadolu Üniversitesi, Fen Bilimleri Enstitüsü, Eskişehir, 2015.
  • Hawkes F.R., Dinsdale R., Hawkes D.L., Hussy I., Sustainable fermentative hydrogen production: challenges for process optimization, Int. J. Hydrogen Energy, 27 (11), 1339-1347, 2002.
  • Wang J. ve Wan W., Kinetic models for fermentative hydrogen production: a review, Int. J. Hydrogen Energy, 34 (8), 3313-3323, 2009.
  • Eaton A.D., Clesceri L.S., Franson M.A.H., Greenberg A.E., Rice E.W., Standard Methods for the Examination of Water and Wastewater, Cilt 21, American Public Health Association, Washington, A.B.D., 2005.
  • Hitit Z.Y., Lazaro C.Z., Hallenbeck P.C., Increased hydrogen yield and COD removal from starch/glucose based medium by sequential dark and photofermentation using Clostridium butyricum and Rhodopseudomonas palustris, Int. J. Hydrogen Energy, 42 (30), 18832-18843, 2017.
  • Sood S., Singhal R., Bhat S., Kumar A., Inoculum Preparation, Comprehensive Biotechnology, Editör: Moo-Young M., Elsevier Science & Technology, New York, A.B.D., 2,151-164, 2011.
  • Levenspiel O., Chemical Reaction Engineering, Wiley, New York, A.B.D., 1999.
  • Niazi S.K. ve Brown J.L., Fundamentals of Modern Bioprocessing, CRC Press, Florida, A.B.D., 2015.
  • Güleç F., Şimşek E.H., Karaduman A., Disproportionation kinetics of 2-methylnaphthalene in the presence of Zr/ZSM5 zeolite catalysts, Journal of the Faculty of Engineering and Architecture of Gazi University, 31 (3), 609-619, 2016.
  • Huang L., Hwang A., Phillips J., Effect of temperature on microbial growth rate–mathematical analysis: the Arrhenius and Eyring–Polanyi connections, J. Food Sci., 76 (8), E553-E560, 2011.
  • Lo Y.C., Chen W.M., Hung C.H., Chen S.D., Chang J.S., Dark H2 fermentation from sucrose and xylose using H2-producing indigenous bacteria: feasibility and kinetic studies, Water Res., 42 (4), 827-842, 2008.
  • Laidler K.J. ve Meiser J.H., Physical Chemistry, The Benjamin Cummings Publishing Company, California, A.B.D., 1982.
  • Mu Y., Yu H.Q., Wang G., A kinetic approach to anaerobic hydrogen-producing process, Water Res., 41 (5), 1152-1160, 2007.
  • Lin C.Y., Chang C.C., Hung C.H., Fermentative hydrogen production from starch using natural mixed cultures, Int. J. Hydrogen Energy, 33 (10), 2445-2453, 2008.
  • Lin C.Y., Wu C.C., Wu J.H., Chang F.Y., Effect of cultivation temperature on fermentative hydrogen production from xylose by a mixed culture, Biomass Bioenergy, 32 (12), 1109-1115, 2008.
  • Nath K. ve Das D., Modeling and optimization of fermentative hydrogen production, Bioresour. Technol., 102 (18), 8569-8581, 2011.
  • Hitit Z.Y., Lazaro C.Z., Hallenbeck P.C., Single stage hydrogen production from cellulose through photofermentation by a co-culture of Cellulomonas fimi and Rhodopseudomonas palustris, Int. J. Hydrogen Energy, 42 (10), 6556-6566, 2017.
  • Van Ginkel S.W., Oh S.E., Logan B.E., Biohydrogen gas production from food processing and domestic wastewaters, Int. J. Hydrogen Energy, 30 (15), 1535- 1542, 2005.
  • Patel S.K., Lee J.K., Kalia V.C., Dark-Fermentative Biological Hydrogen Production from Mixed Biowastes Using Defined Mixed Cultures, Indian J. Microbiol., 57 (2), 171-176, 2017.
  • Zhu H., Stadnyk A., Béland M., Seto P., Co-production of hydrogen and methane from potato waste using a twostage anaerobic digestion process, Bioresour. Technol., 99 (11), 5078-5084, 2008.
Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi-Cover
  • ISSN: 1300-1884
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1986
  • Yayıncı: Oğuzhan YILMAZ
Sayıdaki Diğer Makaleler

ρ-kazanım: fayda temelli veri yayınlama modeli

Yılmaz VURAL, Murat AYDOS

Karanlık fermentasyon ile patates besi ortamından biyohidrojen üretimi için uygun işletim koşullarının belirlenmesi ve kinetik analizi

Bülent AKAY, Furkan SOYSAL, Zeynep YILMAZER HİTİT, Şule CAMCIOĞLU, Suna ERTUNÇ, Baran ÖZYURT

Mikro işlemede takım aşınması-kanal geometrisi ilişkisi üzerine deneysel bir çalışma

Kubilay ASLANTAŞ, Adem ÇİÇEK, Safiye Gülbin ÇELİK

Sert malzemelerin tornalanmasında takım aşınmasının tepki yüzeyi metodolojisi ile incelenmesi

Dilek MURAT, Cihat ENSARİOĞLU, Necmi GÜRSAKAL, Ali ORAL, M. Cemal ÇAKIR

Kaiser-Hamming pencere yapısı ve Huang dönüşümü kullanılarak iki boyutlu sayısal süzgeç tasarımı ve imge iyileştirme uygulaması

Kemal AVCI

Kompozit malzeme üretiminde kullanılan polyesterlerin mekanik, termal ve kimyasal özelliklerine başlatıcı etkisinin incelenmesi

Bayram POYRAZ

Organik Rankine- Brayton birleşik çevriminin enerji ve ekserji analizi

Önder KAŞKA, Onur BOR, Nehir TOKGÖZ

Farklı malzemelerin toprak – hava ısı değiştiricisinin (THID) ısıl performansına etkisinin incelenmesi

Hüsamettin BULUT, Yunus DEMİRTAŞ, Nesrin İlgin BEYAZİT

Hareketli yük etkisindeki çatlaklı elastik kirişlerde gerilme şiddeti faktörleri

Volkan - KAHYA, Sebahat - KARACA

Toz metalurjisi yöntemiyle üretilen tungsten-bakır kompozit malzemelerin mikro frezelenmesi: Kompozisyon ve sinterleme sıcaklığının etkisi

Ali ERÇETİN, Kubilay ASLANTAŞ, Mustafa PERÇİN