Eşit kanallı açısal preslenmiş toz halde Al-%5Ni alaşımının mikro yapısal karakterizasyonu

Bu çalışmanın amacı eşit kanallı açısal presleme yöntemiyle (EKAP) toz halde Al-%5Ni alaşımını pekiştirmektir. Saf Al ve ağırlıkça %5 saf nikel tozlarına 200°C'de 5-15 geçişli EKAP yöntemi uygulanmıştır. EKAP geçiş sayısının artışıyla, Al matriste Ni parçacıkları homojen olarak dağılmıştır ancak, Al matriste Ni'in tam olarak çözünebilirliğinin etkili olmadığı görülmüştür. EKAP işleminin geçiş sayıları artışıyla ortalama tane boyutu düşmüştür. 5 geçişli ECAP işlemiyle tane incelmesi başlangıç iri Al tozlarının kıyılarında (Al parçacıklar arasında) başlamışken, 15 geçişli EKAP işlemiyle daha ince ve uzamış taneler elde edilebilmiştir. Numunelerin ortama yoğunlukları ve HV0,5 mikro sertlikleri sırasıyla 2,7 g/cm3 ve 61 olarak sağlanmıştır. Bu EKAP şartlarında belirgin bir Al-Ni intermetalik fazları sağlanmamıştır

Microstructural characterization of equal-channel angular-pressed as powder Al-5% Ni alloy

The aim of this study was to consolidate of powders mixed Al-Ni through equal channel angular pressing (ECAP). Pure Al and 5 % (in wt.) Ni powders were exposed to ECAP with 5-15 passes procedure at 200°C. With the increasing ECAP passes, Ni particles distributed in the Al matrix homogeneously and the solubility of Al in the Ni particles increased relatively. However, it was seen that Ni solubility in the Al matrix wasn’t sufficient. The average grain size reduced with the increasing pass numbers of the ECAP process. While grain refinement started forming at the edge of initial large Al powder (inter-particles of Al) after applying 5-pass ECAP, finer and elongated grains were obtained after the 15 - pass ECAP process. Average densities and HV0,5 micro hardness of the specimens were found as 2,7 g.cm-3 and 61 respectively. In these conditions of ECAP, Al-Ni intermetallic phases wasn’t distinct formed

___

  • 1. Valiev R.Z., Islamgaliev R.K., Alexandrov I.V., Bulk nano structured materials from severe plastic deformation, Prog. Mater. Sci, 45, 103–189, 2000.
  • 2. Valiev R.Z., Estrin Y., Horita Z., Langdon T.G., Zehetbauer M.J. and Zhu Y.T., Producing Bulk Ultrafi ne-Grained Materials by Severe Plastic Deformation, Nanostruct. Mater., 58 (4), 33–39, 2006.
  • 3. Langdon T.G., Twenty-five years of ultrafine - grained Materials : achieving exceptional properties through grain refinement, Acta Mater., 61, 7035–7059, 2013.
  • refinement in alloys and intermetallics by severe plastic Deformation, J. Alloys Compd., 536S, S180 – S185, 2012.
  • 5. Robertson J., J.-T. Im, Karaman I., Hartwig K.T., Anderson I.E., Consolidation of amorphous copper based powder by equal channel angular extrusion, J. Non-Cryst. Solids, 317, 144–151, 2003.
  • 6. Hu T., Ma K., Topping T.D., Schoenung J.M., Lavernia E.J. Precipitation phenomena in an ultrafine-grained Al alloy, Acta Mater., 61, 2163–2178, 2013.
  • 7. Lee Z., Zhou F., Valiev R.Z., Lavernia E.J., Nutt S.R., Microstructure and microhardness of cryomilled bulk nanocrystalline Al–7.5%Mg alloy consolidated by high pressure torsion, Scr. Mater., 51, 209–214, 2004.
  • 8. Matsuki K, Aida T, Takeuchi T, Kusui J, Yokoe K., Microstructural characteristics and superplastic-like behavior in aluminum powder alloy consolidated by equal channel angular pressing, Acta Mater., 48, 2625 – 2632, 2000.
  • 9. Wert J.A., Paton N.E., Himilton C.H., Mahoney M.W., Grain refinement in 7075 aluminium by thermo mechanical processing, Metall. Trans., 12 (7), 1267- 1276, 1981.
  • 10. Gholinia A., Humphreys F.J., Prangnell P.B., Processing to ultrafine grain structures by conventional routes, Mater. Sci. Technol., 16 (11-12), 1251-1255, 2000.
  • 11. Roven, H.J., Werenskiold, J.C., Conventional light alloys towards the bottom-a physical metallurgical approach, Nanomat Conference, Oslo, 32-40, 36. (2004).
  • 12. Gleiter H., Nanocrystalline materials, Prog. Mater Sci., 33, 4, 223-315, 1989.
  • 13. Straumal B.B., Sauvage X., Baretzky B., Mazilkina A.A., Valiev R.Z. Grain boundary films in Al–Zn alloys after high pressure torsion, Scr. Mater. 70, 59–62, 2014.
  • 14. Cubero-Sesin J.M., Horita Z., Powder consolidation of Al–10 wt% Fe alloy by High-Pressure Torsion, Mater. Sci. Eng., A., 558, 462–471, 2012.
  • 15. Segal V.M., Reznikov V.I., Drobyshevskiy A.E., Kopylov V.I., Plastic Metal Working by Simple Shear, Russ. Metall., 1, 99-105, 1981.
  • 16. Chang S-Y., Lee K-S., Choi S-H., Shin D.H., Effect of ECAP on microstructure and mechanical properties of a commercial 6061 Al alloy produced by powder metallurgy, J. Alloys Compd., 354, 216–220, 2003.
  • 17. Senkov O.N., Senkova S.V., Scott J.M., Miracle D.B., Compaction of amorphous aluminum alloy powder by direct extrusion and equal channel angular extrusion, Mater. Sci. Eng., A., 393, 12–21, 2005.
  • 18. Saravanan M., Pillai R.M., Ravi K.R., Pai B.C., Brahmakumar M., Development of ultrafine grain aluminium–graphite metal matrix composite by equal channel angular pressing, Compos. Sci. Technol., 67, 1275–1279, 2007.
  • 19. Mani B., Jahedi M., Paydar M.H., Consolidation of commercial pure aluminum powder by torsional-equal channel angular pressing (T-ECAP) at room temperature, Powder Technol., 219, 1-8, 2012.
  • 20. Li P., Xue K., Wang X., Qian C., Refinement and consolidation of pure Al particles by equal channel angular pressing and torsion, Trans. Nonferrous Met. Soc., 24, 1289−1294, 2014.
  • 21. Zhu Y.T., Lowe T.C., Observations and issues on mechanisms of grain refinement during ECAP process, Mater. Sci. Eng., A., 291, 46–53, 2000.
  • 22. Edelstein A. S., Everett R. K., Richardson G. Y., Qadri S. B., and Altman E. I., Intermetallic phase formation during arnnealing of AI/Ni multilayer, J. Appl. Phys., 76 (12), 15, 1994.
  • 23. Prokoshkina D., Klinger L., Moros A., Wilde G., Rabkin E., Divinski S.V., Effect of recrystallization on diffusion in ultrafine-grained Ni, Acta Mater., 69, 314–325, 2014.
  • 24. Beddoes J., Wallace W., de Malherbe M.C., Densification of γ-TiAl Powder By Hot Isostatic Pressing, Int. J. Powder Metall., 28, 313-326, 1992.
  • 25. Suryanarayana C., Korth G.E., Froes F.H., Compaction and Characterization of Mechanically Alloyed Nanocrystalline Titanium Aluminides, Metall. Mater. Trans. A, 28A, 293-302, 1997.
  • 26. Massalski T.B. et.al., Binary alloy phase diagrams, American Society for Metals Materials Park, 1 Ohio, 1986.
  • 27. Paydar M.H., Reihanian M., Bagherpour E., Sharifzadeh M., Zarinejad M., Dean T.A., Equal channel angular pressing–forward extrusion (ECAP– FE) consolidation of Al particles, J. Mater. Des., 30, 429−43, 2009.
  • 28. Cardoso K.R., Travessa D.N., Botta W.J., Jorge Jr A.M., High Strength AA7050 Al alloy processed by ECAP, Microstructure and mechanical properties, Mater. Sci. Eng., A, 528 (18), 5804-5811, 2011.
  • 29. Kotan H., Consolidation of Thermally Stabilized Fe Based Ferritic Steels Via Hot Pressing And Hot Extrusion (Ecae), Journal of the Faculty of Engineering and Architecture of Gazi University, 31 (1) 171-179, 2016.