Dişlilerin uzman sistem tabanlı tanımlanması ve detaylı boyutlarının çıkarılması

Bu makalede, bir BDT sisteminde tasarlanan katı modellerden düz ve helis dişlileri tanımlamak ve detaylı boyutlarını çıkarmak için bir uzman sistem yazılımı geliştirilmiş ve dişli tanımlama sistemine entegre edilmiştir. Dişlilere ait BDT (Bilgisayar Destekli Tasarım) modellerinin STEP (Standard for the exchange of product data model) dosyaları tüm sisteme girdi olarak kullanılmıştır. Algoritma iki aşamada yürütülmektedir. İlk aşamada, uzman sistem için tasarlanan bir bilgi tabanında temsil edilen kurallar ve herhangi bir dişliye ait BDT modelinin STEP fiziksel dosyası muhakeme edilerek düz ve helis dişliler uzman sistem tarafından tanımlanmaktadır. İkinci aşamada, tanımlanan dişlilerin detaylı boyutları, STEP dosyasından elde edilen veri sayesinde çıkarılmaktadır. Geliştirilen yaklaşım, bu çalışmada sadece düz ve helis dişlilere uygulanmasına rağmen, farklı BDT/BDİ (Bilgisayar Destekli İmalat) uygulamaları için cıvata, somun, rondelâ, boru, vs. gibi farklı parça ailelerine başarı ile uygulanabilir.

Expert system based identification and extraction of detailed dimensions for gears

In this paper, an expert system software has been developed and integrated to identify the spur and helical gears, and to extract their detailed dimensions from solid models designed in a CAD system. The STEP files of CAD models of gears have been used as input to the whole system. The algorithm is executed in two main stages. In the first stage, the spur and helical gears are identified by expert system by reasoning STEP physical file of CAD model belonging to any gear and rules represented in a knowledge base constructed for the expert system. In the second stage, detailed dimensions of the identified gears are extracted via data obtained from STEP file. Although the developed approach is only applied to spur and helical gears in this study, it can be successfully implemented to different part families such as bolts, nuts, washers, pipes etc. for other CAD/CAM applications.

___

  • 1. Çiçek, A., Gülesin, M., “Reconstruction of 3D models from 2D orthographic views using solid extrusion and revolution”, Journal of Materials Processing Technology, 152, 291–298, 2004.
  • 2. Bhandarkar, M.P., & Nagi, R., “STEP-based feature extraction from STEP geometry for agile manufacturing”, Computers in Industry, 41, 3- 24, 2000.
  • 3. Lockett, H.L., & Guenov, M.D., “Graph-based feature recognition for injection moulding based on a mid-surface approach”, Computer-Aided Design, 37, 251-262, 2005.
  • 4. Rezayat, M., “Mid-surface abstraction from 3D solid models: general theory and applications”, Computer Aided Design, 26(11), 905-915, 1996.
  • 5. Gulesin, M., “An intelligent knowledge based process planning and fixturing system using the STEP Standard”, PhD Thesis, Coventry University, 1993.
  • 6. Gulesin, M., & Jones, R.M., “Face oriented neighbouring graph (FONG): a part representing scheme for process planning”, Computer Integrated Manufacturing Systems, 7(3), 213- 218, 1994.
  • 7. Mehalawi, M., & Miller, R.A., “A database system of mechanical components based on geometric and topological similarity. Part I: representation”, Computer Aided Design, 35, 83- 94, 2003.
  • 8. Mehalawi, M., & Miller, R.A., “A database system of mechanical components based on geometric and topological similarity. Part II: indexing, retrieval, matching and similarity assessment”, Computer Aided Design, 35, 95- 105, 2003.
  • 9. Çiçek, A., “Developing of computer aided part recognition system and implementation to engine assembly”, PhD Thesis, Gazi University, Turkey, 2005.
  • 10. Prabhu, B.S., & Pande, S.S., “Intelligent interpretation of CADD drawings”, Computers & Graphics, 23, 25-44, 1999.
  • 11. Prabhu, B.S., Biswas, S., & Pande, S.S., “Intelligent system for extraction of product data from CADD models”, Computers in Industry, 44, 79-95, 2001.
  • 12. Pal, P., & Kumar, A., “A hybrid approach for identification of 3D features from CAD database for manufacturing support”, International Journal of Machine Tools & Manufacture, 42, 221-228, 2002.
  • 13. Pal, P., Tigga, A.M., & Kumar, A., “A strategy for machining interacting features using spatial reasoning”, International Journal of Machine Tools & Manufacture, 45, 269-278, 2005.
  • 14. Trappey, A.J.C., & Lai, C.S., “A data representation scheme for sheet metal parts: expressing manufacturing features and tolerance requirements”, Journal of Manufacturing Systems, 14(6), 393-405, 1995.
  • 15. Lee, J.Y., & Kim, K., “Generating alternative interpretations of machining features”, International Journal of Advanced Manufacturing Technology, 15, 38-48, 1999.
  • 16. Lee, J.Y., & Kim, K., “A feature-based approach to extracting machining features”, Computer Aided Design, 30(13), 1019-1035, 1998.
  • 17. Çiçek A, & Gülesin M., “A part recognition based computer aided assembly system”, Computers in Industry, 58(8-9), 733-746, 2007.