$Cu^{2+}$ eklenmiş hidroksiapatitlerin yüksek sıcaklıkta sinterlenmesi ve iç yapı incelemesi

Saf ve $Cu^{2+}$ eklenmiş hidroksiapatitler (HA) çöktürme metodu ile üretildi. 1100°C’deki atmosferde yapılmış olan sinterleme sonucunda, $Cu^{2+}$ iyonlarının HA’nın iç yapısına ve ısısal dayanımına olan etkileri araştırıldı. Element analizleri göstermiştir ki çöktürme metodunda $Cu^{2+}$ iyonlarının HA’ya eklenmesi işlemi yüksek pH (=11) seviyelerinden dolayı kısıtlanmıştır.$Cu^{2+}$’nin HA’ya katılması, HA’nın hegzagonal kafes parametrelerini değiştirmiştir. $Cu^{2+}$’nin eklenmesi, 1100°C’deki sinterleme sonucunda daha küçük tanecik boyutuna sahip olunmasına neden olmuştur.

High temperature sintering of $Cu^{2+}$ doped hydroxyapatites and microstructural investigation

Pure and $Cu^{2+}$ doped hydroxyapatites (HA) were synthesized by a precipitation method to investigate the effect of $Cu^{2+}$ ions into the structure of HA and thermal stability after the air sintering at 1100°C. Elemental analysis showed that doping of $Cu^{2+}$ ions into HA was limited because of the high pH (=11) during the precipitation method. $Cu^{2+}$ addition into HA changed the hexagonal lattice parameters of the HA. $Cu^{2+}$ addition resulted in smaller grain size after the sintering at 1100°C.

___

  • 1. Narasaraju, T.S.B. ve Phebe, D.E., “Some physico-chemical aspects of hydroxylapatite”, Journal of Materials Science, Cilt 31, 1-21, 1996.
  • 2. Ergun, C., Webster, T.J., Bizios, R. ve Doremus, R.H., “Hydroxylapatite with substituted magnesium, zinc, cadmium, and yttrium. I. Structure and microstructure,” Journal of Biomedical Materials Research, Cilt 59, 305- 311, 2002.
  • 3. Webster, T.J., Massa-Schlueter, E.A., Smith, J. L. ve Slamovich, E.B., “Osteoblast response to hydroxyapatite doped with divalent and trivalent cations,” Biomaterials, Cilt 25, 2111-2121, 2004.
  • 4. Evis, Z., “Al3+ doped nano-hydroxyapatites and their sintering characteristics”, Journal of the Ceramic Society of Japan, Cilt 114, 1001-1004,
  • 5. Suzuki, S., Fuzita, T., Maruyama, T. ve Takahashi, T., Journal of the American Ceramic Society, Cilt 76, No 6, 1638-1640, 1993.
  • 6. Kim, T.N., Feng, Q.L., Kim, J.O., Wu, J., Wang, H., Chen, G.C. ve Cui, F.Z., “Antimicrobial effects of metal ions (Ag+, Cu2+, Zn2+) in hydroxyapatite”, Journal of Materials Science: Materials in Medicine, Cilt 9, 129-134, 1998.
  • 7. Gutowska, I., Machoy, Z. ve Machalinski, B., “The role of bivalent metals in hydroxyapatite structures as revealed by molecular modeling with the HyperChem software”, Journal of Biomedical Materials Research, Cilt 75A, 788- 793, 2005.
  • 8. Lusvardi, G., Menabue, L., Saladini, M., ve Spaggiari, “Effect of pH and anions on hydroxyapatite-Cu2+ solid-liquid interactions,” Journal of Materials Chemistry, Cilt 5, 493- 497, 1995.
  • 9. Jarcho, M., Bolen, C.H., Thomas, M.B., Babock, J., Kay, J.F. ve Doremus, R.H., “Hydroxylapatite synthesis and characterization in dense polycrystalline form,” Journal of Materials Science, Cilt 11, 2027-2035, 1976.
  • 10. Cullity, B.D., Elements of x-ray diffraction, 2nd edition, Addison-Wesley, Reading, MA, Section 14, 1978.
  • 11. Hilliard, J.E., Estimating grain size by the intercept method, Metal Progress Data Sheet, 99-102, 1964.
  • 12. Yang, H., Zhang, L. ve Xu, K.-W., “Effect of storing on the microstructure of Ag/Cu/HA powder,” Ceramics International, Cilt 35, 1595- 1601, 2009.
  • 13. Shannon, R.D., “Revised effective ionic-radii systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallographica A, Cilt 32, 751-767, 1976.
  • 14. Corami, A., Mignardi, S. ve Ferrini, V., “Copper and zinc decontamination from single- and binarymetal solutions using hydroxyapatite,” Journal of Hazardous Materials, Cilt 146, 164-170, 2007.
  • 15. Batton, J., Kadaksham, A.J., Nzihou, A., Singh, P. ve Aubry, N., “Trapping heavy metals by using calcium hydroxyapatite and dielectrophoresis,” Journal of Hazardous Materials, Cilt 139, 461-466, 2007.
  • 16. Li, J.-D., Li, Y.-B., Zuo, Y., Lu, G.-Y., Yang, W.-H. ve Mo, L.-R., “Preparation and antibacterial properties valuation of coppersubstituted nano-hydroxyapatite,” Journal of Functional Materials, Cilt 37, 635-638, 2006.
  • 17. Sutter, B., Taylor, R.E., Hossner, L.R. ve Ming, D.W., “Solid state 31Phosphorus nuclear magnetic resonance of iron-, manganese-, and copper-containing synthetic hydroxyapatites,” Soil Science Society of America Journal, Cilt 66, 455-463, 2002.