Borik asit ve boron fosfat destekli, sülfonlanmış polistiren/polivinil alkol kompozit membran sentezi ve karakterizasyonu

Polimer elektrolit yakıt hücreleri (PEMFC), işletimlerinin kolay olması, yüksek enerji yoğunlukları, verimlerinin içten yanmalı motorlara göre çok yüksek olması ve zararlı emisyonlarının olmaması nedeniyle en fazla umut vaat eden güç kaynağı adayıdır. PEMFC’nin kalbini proton değiştirici membran oluşturmaktadır Günümüzde elektrolit olarak kullanımı en yaygın olan membranlar perfluoro sülfonik asit membranlardır. Ancak bu membranların yüksek sıcaklıkta proton iletkenliği düşüktür ve çok pahalıdır. Bu nedenle çalışmalar alternatif membranlar arayışı üzerine yoğunlaşmıştır. Bu çalışmada Nafion® içerikli membrana göre daha iyi fiziksel ve kimyasal özelliklere sahip, hem organik hem de inorganik yapıyı bir arada bulunduran kompozit membran sentezi amaçlanmıştır. Yapılan çalışmada borik asit bazlı sülfonlanmış polistiren/polivinil alkol kompozit membranı ve boron fosfat bazlı sülfonlanmış polistiren/polivinil alkol kompozit membranı sentezlenmiştir. Sentezlenen membranlar su tutma kapasitesi, kalınlık ölçümleri, Taramalı Elektron Mikroskobu (SEM) analizleri, Fourier Dönüşüm Kızıl Ötesi Spektroskopisi (FT-IR), iyon değiştirme kapasitesi (IEC), termalgravimetrik analiz (TGA) ve elektrokimyasal empedans ölçümleri gibi karakterizasyon deneylerine tabi tutulmuştur. Çalışmaların sonucunda SPS-PVA-9BP kodlu membranın diğer membranlara göre daha yüksek proton iletkenliği (0,047 mS/cm), iyon değiştirme kapasitesi (1.46 meq/g) ve su tutma kapasitesine (%20.78) sahip olduğu belirlenmiştir. Literatürede rapor edilen değerler ve çalışma kapsamında edinilen bilgilere dayanılarak bu özelliklere sahip bir membran yakıt hücrelerinde elektrolit olarak kullanıma uygundur olduğu düşünülmektedir.

Synthesis and characterization of sulphonated polystyrene/polyvinyl alcohol composite membrane with boric acid and boron phosphate support

Polymer Electrolyte Fuel Cells (PEMFC) are the most promising energy source candidate due to their excellent properties such as ease of their operation and maintenance, having high energy density, having higher efficiency than the internal combustion engines and their non-toxic emission. Proton exchange membrane is regarded as the heart of the PEMFC. Today, perfluoro sulfonic acid membranes are the most widely used membranes. However proton conductivity of these membranes is very small at high temperatures and they are very expensive. Therefore studies have been focused on the investigation of alternative membranes. In this study, it is aimed to synthesize an organic-inorganic composite membrane that has better properties than the Nafion® membrane. The synthesis of sulfonated polystyrene/polyvinyl alcohol composite membranes with different additives namely, boron phosphate or boric acid were carried out. Also these membranes were subjected to the characterization experiments such as, determination of water uptake capacity and ion exchange capacity, thickness measurements, Scanning electron microscope (SEM), FT-IR, Thermorgravimetric analysis and electrochemical impedance analysis (EIS). As a result of all these studies it was determined that the membrane coded as SPS-PVA-9PB has the highest proton conductivity (0.047 mS/cm), ion exchange capacity (1.46 meq/g) and water uptake (%20.78). Regarding the values reported in the literature and depending on the knowledge gained during the fuel cell studies it was concluded that any membrane which has the above properties is suitable for the fuel cell applications.

___

  • 1. İnternert: Schatz Energy Research Center, Humbolt State University “Fuel Cells” and “Fuel Cell FAQs” and “The PEM Fuel Cell Schematic” www.humboldt.edu/ (2007).
  • 2. Sperling, D. and Cannon, J.S., “Strategies for a Hydrogen Transition”, The Hydrogen Energy Transition 3rd ed., Elsevier Academic Pres, California, 9-11 (2004).
  • 3. Ar, F. ‘’Yakıt Hücreleri:Tarihsel Gelişimi, Teknolojisi, Çeşitleri ve Dünyadaki Uygulamaları’’, Elektrik İşleri Etüt İdaresi Bülteni,Ankara,1-2 (1998)
  • 4. Halim, J., Büchi, F.N., Haas, O., Stamm, M. and Scherer, G.G., “Characterization of perfluorosulfonic acid membranes by conductivity measurements and small-angle x-ray scattering”, Electrochimica Acta, 39 (8-9): 1303-1307 (1994).
  • 5. Cheddie, D. and Munroe, N., “A two-phase model of an intermediate temperature PEM fuel cell”, International Journal of Hydrogen Energy, 32 (7): 832-841 (2007).
  • 6. Cheddie, D. and Munroe, N., “Mathematical model of a PEMYH using a PBI membrane”, Energy Conversion and Management, 47 (11-12): 1490- 1504 (2006).
  • 7. Carollo, A., Quartarone, E., Tomasi, C., Mustarelli, P., Belotti, F., Magistris, A., Maestroni, F., Parachini, M., Garlaschelli, L. And Righetti, P.P., “Developments of new proton conducting membranes based on different polybenzimidazole structures for fuel cells applications”, Journal of Power Sources, 160 (1): 175-180 (2006).
  • 8. Cheddie, D. And Munroe, N., “Three dimensional modeling of high temperature PEM fuel cells”, Journal of Power Sources, 160 (1): 215-223 (2006).
  • 9. Qing, S., Huang, W. and Yan, D., “Synthesis and characterization of thermally stable sulfonated polybenzimidazoles”, European Polymer Journal, 41 (7): 1589-1595 (2005).
  • 10. Jang, M.Y. and Yamazaki, Y., “Preparation and characterization of composite membranes composed of zirconium tricarboxybutylphosphonate and polybenzimidazole for intermediate temperature operation”, Journal of Power Sources, 139 (1-2): 2-8 (2005).
  • 11. Rozière, J., Jones, D.J., Marrony, M., Glipa, X. and Mula, B., “On the doping of sulfonated polybenzimidazole with strong bases”, Solid State Ionics, 145 (1-4): 61-68 (2001).
  • 12. Asensio, J.A., Borrós, S. and Romero, P.G., “Proton-conducting membranes based on poly(2,5- benzimidazole) (ABPBI) and phosphoric acid prepared by direct acid casting”, Journal of Membrane Science, 241 (1): 80-93 (2004).
  • 13. Glipa, X., Haddad, M.E., Jones, D.J. And Rozière, J., “Synthesis and characterisation of sulfonated polybenzimidazole: a highly conducting proton exchange polymer”, Solid State Ionics, 97 (1-4): 323-331 (1997).
  • 14. Lee, J.K. and Keres, J., “Synthesis and characterization of sulfonated poly(arylene thioether)s and their blends with polybenzimidazole for proton exchange membranes”, Journal of Membrane Science, 294 (1-2): 75-83 (2007).
  • 15. Ainla, A. and Brandell, D., “Nafion®– polybenzimidazole (PBI) composite membranes for DMFC applications”, Solid State Ionics, 178 (7- 10): 581-585 (2007).
  • 16. Wycisk, R., Chisholm, J., Lee, J., Lin, J. and Pintauro, P.N., “Direct methanol fuel cell membranes from Nafion(R)–polybenzimidazole blends”, Journal of Power Sources, 163 (1): 9-17 (2006).
  • 17. He, R., Li, Q., Bach, A., Jensen, J.O. And Bjerrum, N.J., “Physicochemical properties of phosphoric acid doped polybenzimidazole membranes for fuel cells”, Journal of Membrane Science, 277 (1-2): 38-45 (2006).
  • 18. Lin, C.W., Huang, Y.F. and Kanan, A.M., “Semiinterpenetrating network based on cross-linked poly(vinyl alcohol) and poly(styrene sulfonic acidco-maleic anhydride) as proton exchange fuel cell membranes”, Journal of Power Sources, 164 (2):449-456 (2007).
  • 19. DeLuca, N.W. and Elabd, Y.A., “Direct methanol fuel cell performance of Nafion®/poly(vinyl alcohol) blend membranes”, Journal of Power Sources, 163 (1): 386-391 (2006).
  • 20. Binsu, V.V., Nagarele, R.K., Shahi, V.K. and Ghosh, P.K., “Studies on N-methylene phosphonic chitosan/poly(vinyl alcohol) composite protonexchange membrane”, Reactive and Functional Polymers, 66 (12): 1619-1629 (2006).
  • 21. Wu, C.S., Lin, F.Y., Chen, C.Y. and Chu, P.P., “A polyvinyl alcohol/p-sulfonate phenolic resin composite proton conducting membrane”, Journal of Power Sources, 160 (2): 1204-1210 (2006).
  • 22. Deluca, N.W. and Elabd, Y.A., “Nafion®/poly(vinyl alcohol) blends: Effect of composition and annealing temperature on transport properties”, Journal of Membrane Science, 282 (1-2): 217-224 (2006).
  • 23. Son, J.H., Kang, Y.S. and Won, J., “Poly(vinyl alcohol) -based polymer electrolyte membranes containing polyrotaxane”, Journal of Membrane Science, 281 (1-2): 345-350 (2006).
  • 24. Brijmohan, S.B. and Shaw, M.T., “Proton exchange membranes based on sulfonated crosslinked polystyrene micro particles dispersed in poly(dimethyl siloxane)”, Polymer, 47 (8): 2856- 2864 (2006).
  • 25. Deluca, N.W. and Elabd, Y.A., “Polymer Electroyte Membranes fort the Direct Methanol Fuel Cell: A Review”, J. Polym. Sci. Part B: Polym. Phys, 44: 2201-2225 (2006).
  • 26. Kumar, B. and Fellner, J.P., “Polymer-ceramic composite protonic conductors”, Journal of Power Sourcess, 123: 132-136 (2003).
  • 27. Casciola, M., Alberti, G., Sganappa, G. and Narducci, R., “On the decay of Nafion® proton conductivity at high temperature and relative humidity”, Journal of Power Sources, 162 (1): 141-145 (2006).
  • 28. Huang, L.N., Chen, L.C., Yu, T.L. and Lin, H.L., “Nafion®/PTFE/silicate composite membranes for direct methanol fuel cells”, Journal of Power Sources, 161 (2): 1096-1105 (2006).
  • 29. Shao, Z.G., Joghee, P. and Hsing, I.M., “Preparation and characterization of hybrid Nafion®–silica membrane doped with phosphotungstic acid for high temperature operation of proton exchange membrane fuel cells”, Journal of Membrane Science, 229 (1-2): 43-51 (2004).
  • 30. Vargas M.A., R.A. Vargas, B.E. Mellander, “New proton conducting membranes based on PVAL/H3PO2/H2O”, Electrochimica Acta 44 (1999) 4227-4232
  • 31. Büyükyağcı, A., “Synthesis and Characterization of Monoacetylferrocene Added Sulfonated Polystyrene Ionomers”, Yüksek Lisans Tezi, Orta Doğu Teknik Ünversitesi, Ankara, 25-29 (2004).
  • 32. Krishnan, P., Park, J. S. and Kim, C.S., “Preparation of proton-conducting sulfonated poly(ether ether ketone)/boron phosphate composite membranes by an in situ sol–gel process”, Journal of Membrane Science, 279 (1-2): 220-229, (2006).
Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi-Cover
  • ISSN: 1300-1884
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1986
  • Yayıncı: Oğuzhan YILMAZ