Bir döner kanata arıza toleranslı uçuş kontrol sistemi tasarımı

Bu çalışmada bir döner kanatın farklı motor arıza senaryolarının geliştirilmiş PID denetleyici yaklaşımıyla arıza toleranslı kontrolü yapılmıştır. Denklemleri verilen hava aracının motor dinamikleri de modellenerek gerçekçi bir benzetim elde edilmiştir. Doğrusal olmayan model doğrusallaştırılarak uygun denetleyici yapıları oluşturulmuş, sonrasında bu yapı doğrusal olmayan modelde kullanılmıştır. Son olarak farklı motor arıza senaryoları üzerinden tasarlanan kontrol yapısının gürbüz bir yapı oluşturup oluşturmadığı sınanmıştır. Benzetim sonuçları incelendiğinde, tasarlanan kontrol sisteminin değişik şartlar altında gürbüz bir davranış sergilediği görülmüştür.

Fault tolerant flight control system design to a rotary wing aircraft

In this study, fault tolerant control is made using improved PID controller approach with different motor fault scenarios in a quadrotor. A realistic simulation was set up by obtaining dynamics equations of aircraft and modeling motor dynamics. By linearizing nonlinear model suitable controller is formed and this controller scheme is used in nonlinear models. Finally, designed control structure over different motor fault scenarios is tested whether a robust control structure is built. When the simulation results are analyzed, the performance of the designed control system shows a robust behavior under various conditions.

___

  • 1. Nonami K., Kendoul F., Suzuki S., Wang W., Nakazawa D., Autonomous Flying Robots, Springer, Tokyo, 2010.
  • 2. Di L., Cognitive formation flight in multi-unmanned aerial vehicle-based personal remote sensing systems, Master of Science, Utah State University, Electrical Engineering, Logan, Utah, USA, 2011.
  • 3. Milosevic B., Naldi R., Farella E., Benini L., Marconi L., Design and Validation of an Attitude and Heading Reference System for an Aerial Robot Prototype, American Control Conference, Montreal, 2012.
  • 4. VanKampen D.A., Simulator Centered Design: Abstracting the Operating Environment on Radio Controlled Airplane Autopilot Development, Master of Science, Marquette University, Computing, Milwaukee, Wisconsin, USA, 2012.
  • 5. Dydek Z.T., Annaswamy A.M., Lavretsky, E., Adaptive Control of Quadrotor UAVs: A Design Trade Study With Flight Evaluations, IEEE Transactions on Control Systems Technology, 21 (4), 1400-1406, 2013.
  • 6. Raffo G.V., Ortega M.G., Rubio F.R., An Integral Predictive/Nonlinear H Control Structure For a Quadrotor Helicopter, Automatica, 46, 29-39, 2010.
  • 7. Hoffmann F., Goddemeier N., Bertram T., Attitude Estimation and Control of a Quadcopter, IEEE International Conference on Intelligent Robots and Systems, Taipei, Tayvan, 2010.
  • 8. Gautam D., Ha C., Control of a Quadrotor Using a Smart Self-Tuning Fuzzy PID Controller, International Journal of Advanced Robotic Systems, 10 (380), 1-9, 2013.
  • 9. Chee K.Y., Zhong Z., Control, Navigation and Collision Avoidance for an Unmmanned Aerial Vehicle, Sensors and Actuators A: Physical, 190, 66- 76, 2013.
  • 10. Sadeghzadeh I., Mehta A., Chamseddine A., Zhang Y., Active Fault Tolerant Control of a Quadrotor UAV Based on Gain- Scheduled PID Control, 25. IEEE Canadian Conference on Electrical and Computer Engineering, 2012.
  • 11. Yu B., Zhang Y., Minchala I., Qu Y., Fault-tolerant Control with Linear Quadratic and Model Predictive Control Techniques Against Actuator Faults in a Quadrotor UAV, Conference on Control and FaultTolerant Systems, Nice, Fransa, 2013.
  • 12. Lanzon A., Freddi A., Longhi S., Flight Control of a Quadrotor Vehicle Subsequent to a Rotor Failure, AIAA Journal of Guidance, Control and Navigation, 37 (2), 580-591, 2014.
  • 13. Sadeghzadeh I., Mehta A., Zhang Y., Fault Tolerant Control of a Quadrotor Helicopter Using Model Reference Adaptive Control, ASME 2011 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, Washington, USA, 2011.
  • 14. Sharifi F., Mirzaei M., Gordon B.W., Zhang Y., Fault Tolerant Control of a Quadrotor UAV Using Sliding Mode Control, Conference on Control and Fault Tolerant Systems, Nice, France, 2010.
  • 15. Amoozgar M.H., Chamseddine A., Zhang Y., FaultTolerant Fuzzy Gain-Scheduled PID for a Quadrotor Helicopter Testbed in the Presence of Actuator Faults, IFAC Conference on Advances in PID Control, Brescia, Italy, 2012.
  • 16. Pamadi B.N., Performance, Stability, Dynamics and Control of Airplanes, AIAA Education Series, Reston, Virginia, ABD, 1998.
  • 17. Önkol M., Dönerkanat Tipinde Bir İnsansız Hava Aracının Tasarımı, Modellenmesi ve Kontrolü, Yüksek Lisans Tezi, TOBB Ekonomi ve Teknoloji Üniversitesi, Fen Bilimleri Entitüsü, 2010.
  • 18. Corke P., Robotics, Vision and Control - Fundamental Algorithms in MATLAB, Springer-Verlag, Berlin, 2013.
  • 19. Bresciani, T., Modelling, Identification and Control of a Quadrotor Helicopter, Yüksek Lisans Tezi, Lund Üniversitesi, 2008.
  • 20. Henriques B.S.M., Estimation and Control of a Quadrotor Attitude, Master of Science, Instituto Superior Técnico, Lisbon University, Portugal, 2011.
  • 21. Güçlü A., Attitude and Altitude Control of an Outdoor Quadrotor, Yüksek Lisans Tezi, Atılım Üniversitesi, Fen Bilimleri Enstitüsü, 2012.
  • 22. Salem F.A., Controllers and Control Algorithms: Selection and Time Domain Design Techniques Applied in Mechatronics Systems Design (Review and Research) Part I, International Journal of Engineering Sciences, 2 (5), 160-190, 2013.
  • 23. Számel L., Adaptive PF (PDF) Speed Control for Servo Drives, International Journal of Automation and Power Engineering (IJAPE), 2 (4), 65-73, 2013.