Atık palmiye ve kanola yağı metil esterlerinin kullanıldığı direkt püskürtmeli bir dizel motorda performans ve yanma

Bu çalışmada, atık palmiye metil esteri (APYME) ve kanola yağı metil esterinin (KYME) performans, yanma ve püskürtme karakteristikleri petrol kökenli dizel yakıtı (PKDY) referans alınarak incelenmiştir. Performans, yanma ve püskürtme karakteristiklerini belirlemek için, 6 silindirli, doğal emişli ve direkt püskürtmeli bir dizel motorda, 1000, 1500, 2000 d/d sabit motor hızlarında tam yük testleri gerçekleştirilmiştir. Test motorunda, APYME ve KYME kullanımı ile PKDY’a göre motor gücünde ve ısıl verimde ortalama %2 oranında azalma meydana gelirken, özgül yakıt tüketiminde (ÖYT) ortalama %6 oranında artış olmuştur. Metil esterlerin ve PKDY’nin silindir gaz basıncı, ısı dağılımı ve yakıt hattı basınç grafikleri incelendiğinde, motorda meydana gelen mekanik yüklemeler açısından, yakıtların yanma grafiklerinin birbirlerine benzer olduğu görülmüştür. Bununla beraber, metil ester kullanımı ile PKDY’a göre ön yanma safhasının daha erken başladığı, tutuşma gecikmesinin daha kısaldığı ve maksimum silindir gaz basıncı bölgesinin üst ölü noktaya (ÜÖN) biraz daha yaklaştığı belirlenmiştir. Ayrıca metil esterlerin kullanımı ile PKDY’a göre yakıt sevk başlangıcının daha erken başladığı da tespit edilmiştir. Metil esterlerin kullanımı ile değişen püskürtme ve yanma karakterleri ve metil esterin yakıt özellikleri, hidrokarbon (HC), karbon monoksit (CO) ve duman koyuluğu emisyonlarında azalma meydana getirirken, NOx emisyonlarında ise kısmen artışa neden olmuştur.

Performance and combustion in a direct injection diesel engine fuelled with waste palm and canola oil methyl esters

In this study, the performance, combustion and injection characteristics of waste (frying) palm oil (WPOME) and canola oil (COME) methyl esters have been investigated, and compared to petroleum based diesel fuel (PBDF) as reference fuel. In order to determine the performance, combustion and injection characteristics, the experiments were carried out in a six-cylinder, naturally aspirated, direct injection diesel engine at 1000, 1500, 2000 rpm constant engine speeds under the full load condition. When the test engine was fueled with WPOME and COME, while the brake power and thermal efficiency reduced by 2%, the brake specific fuel consumption increased by 6% on average. When the cylinder gas pressure, heat release and fuel line pressure graphics of the methyl esters and PBDF are investigated, it will be seen that the combustion graphics of the fuels seem similar to each other with respect to mechanical loading. However, by using methyl ester, very little combustion differences took place such as earlier premixed combustion phase, shorter ignition delay and maximum cylinder gas pressure region closed to top dead center (TDC) compared to PBDF. In addition, when the test engine was fueled with methyl esters, the start of injection timing took place earlier than that of PBDF. The with usage of the methyl esters changes in the injection and combustion characteristics, and fuel properties of the methyl ester caused reductions in carbon monoxide (CO), unburned hydrocarbon (HC) emissions and smoke opacity, but they caused to increases in nitrogen oxides (NOx) emissions.

___

  • 1. Özsezen, A.N., Çanakçı, M., “Türkiye'de ve Dünyada Enerji Tüketimi-Biyodizel”, 5. GAP Mühendislik Kongresi, Cilt 1, 415-422, 2006.
  • 2. Özsezen, A.N., Atık Palmiye Yağından Üretilen Biyodizelin Motor Performans ve Emisyon Karakterleri Üzerine Etkisinin İncelenmesi, Doktora Tezi, Kocaeli Üniversitesi Fen Bilimleri Enstitüsü, 2007.
  • 3. Knothe, G., Dunn, R.O., Bagby, M.O., “Biodiesel: The Use of Vegetable Oils and Their Derivatives as Alternative Diesel Fuels, In ACS Symp. Ser. 666 (Fuels and Chemicals from Biomass), ACS, Washington DC, 172–208, 1997.
  • 4. Canakci, M., “Performance and Emissions Characteristics of Biodiesel from Soybean Oil”, Proc. IMechE Part D: Journal of Automobile Engineering, 219, 7, 915-922, 2005.
  • 5. Çanakçı, M., Özsezen, A.N., “Atık Mutfak Yağlarının Alternatif Dizel Yakıtı Olarak Değerlendirilmesi”, G.Ü. Fen Bilimleri Dergisi, Cilt 18, No.1, 81-91, 2005.
  • 6. Ozsezen, A.N., Canakci, M., Sayin, C., “Effects of Biodiesel from Used Frying Palm Oil on the Exhaust Emissions of an Indirect Injection (IDI) Diesel Engine”, Energy and Fuels, 22, 4, 2796- 2804, 2008.
  • 7. Ozsezen, A.N., Çanakçı, M., Sayin, C. “Effects of Biodiesel from Used Frying Palm Oil on The Performance, Injection and Combustion Characteristics of an IDI Diesel Engine”, Energy and Fuels, 22, 2, 1297-1305, 2008.
  • 8. Canakci, M., Van Gerpen, J.H. “Comparison of Engine Performance and Emissions for Petroleum Diesel Fuel, Yellow Grease Biodiesel, and Soybean Oil Biodiesel”, Trans. of the ASAE, 46, 4, 937-944, 2003.
  • 9. Sharp, C.A., Howell, S., Jobe, J., “The Effect of Biodiesel Fuels on Transient Emissions from Modern Diesel Engines-Part I: Regulated Emissions and Performance”, SAE Paper, No.2000-01-1967, 2000.
  • 10. Schumacher, L.G., Marshall, W., Krahl, J., Wetherell, W.B., Grabowski, M.S. “Biodiesel Emissions Data from Series 60 DDC Engines”, Trans. of the ASAE, 44, 6, 1465-1468, 2001.
  • 11. Haas, J.M., Scott, K.M., Alleman, T.L., McCormick, R.L., “Engine Performance of Biodiesel Fuel Prepared From Soybean Soapstock: A High Quality Renewable Fuel Produced from a Waste Feedstock”, Energy and Fuels, 15, 5, 1207-1212, 2001.
  • 12. Ulusoy, Y., Tekin, Y., Cetinkaya, M., Karaosmanoğlu, F., “The Engine Tests of Biodiesel from Used Frying Oils”, Energy Sources, 26, 927-932, 2004.
  • 13. Yoshimoto, Y., Onodera, M., Tamaki, H., “Reduction of NOx, Smoke, and bsfc in a Diesel Engine Fueled by Biodiesel Emulsion with Used Frying Oil”, SAE Paper, No.1999-01-3598, 1999.
  • 14. Lee, C.S., Park, S.W., Kwon, S.I., “An Experimental Study on the Atomization and Combustion Characteristics of Biodiesel-Blended Fuels”, Energy and Fuels, 19, 2201-2208, 2005.
  • 15. Krieger, R.B., Borman, G.L., “The Computation of Applied Heat Release for Internal Combustion Engines”, ASME Paper, No.66–WA/DGP–4, 1966.
  • 16. Kegl, B., “Numerical Analysis of Injection Characteristics Using Biodiesel Fuel”, Fuel, 85, 17-18, 2377-2387, 2006.
  • 17. Yamane, K., Ueta, A., Shimamoto, Y., “Influence of Physical and Chemical Properties of Biodiesel Fuels on Injection, Combustion and Exhaust Emission Characteristics in a Direct Injection Compression Ignition Engine”, International Journal of Engine Research, 2, 4, 249-261, 2001.
  • 18. Tat, M.E., Van Gerpen, J.H., Soylu, S., Canakci, M., Monyem, A., Wormley, S., “The Speed of Sound and Isentropic Bulk Modulus of Biodiesel at 21°C from Atmospheric Pressure to 35 MPa”, Journal of the American Oil Chemists’ Society, 77, 3, 285-289, 2000.
  • 19. Rodriguez-Anton, L.M., Casanova-Kindelan, J., Tardajos, G., “High Pressure Physical Properties of Fluids Used in Diesel Injection Systems”, SAE Paper, No.2000-01-2046, 2000.
  • 20. Morgan, W.K.C., Reger, R.B., Tucker, D.M., “Health Effects of Diesel Emissions”, Ann. Occup. Hyg., 41, 6, 643-658, 1997.
  • 21. Steenland, K., Deddens, J., Leslie Stayner, L., “Diesel Exhaust and Lung Cancer in The Trucking Industry: Exposure-Response Analyses and Risk Assessment”, American Journal of Industrial Medicine, 34, 3, 220-228, 1998.
  • 22. Challen, B., Baranescu, R., Diesel Engine Reference Book, Second Edition, Butterworth Heinemann, 1999.
  • 23. Abdel-Rahman, A.A., “On the Emissions from Internal-Combustion Engines: A Review”, Int. J. of Energy Res., Vol.22, 483-513, 1998.
  • 24. Schmidt, K., Van Gerpen, J., “The Effect of Biodiesel Fuel Composition on Diesel Combustion and Emissions”, SAE Paper, No.961086, 1996.
  • 25. Borman, G.L. and Ragland, K.W., Combustion Engineering, McGraw-Hill, New York, 1998.
  • 26. Society of Automotive Engineers, SAE Handbook, Inc., Warrendale, MI, Vol.1, 1304-1306, 2001.