Atık lastik katkılı harç plak ve briketlerin termo-mekanik davranışlarının araştırılması

Bu çalışmada; atık otomobil lastiklerinin uygun geometri ve koşullarda harç içerisine ilavesinin termo-mekanik özellikler üzerindeki etkisi araştırılmaktadır. Atık bir otomobil lastiğinin, çelik telli alın yüzeyi ile çelik tel bulunmayan yanal yüzeyleri farklı amaçlarla kullanılmıştır. Çelik telli lastikler, şerit biçiminde kesilerek harç içerisine döşenmişlerdir. Çelik tel bulunmayan lastikler ise, granül boyutuna getirilerek briket içerisinde agrega olarak kullanılmıştır. Harç numunelerde; farklı miktar ve dizilişin harç numunenin ısıl yalıtım performansı üzerinde etkisi araştırılmıştır. Briket numunelerde ise ilave edilen atık lastik miktarının, ısıl yalıtım performansı ile fiziko-mekanik özellikler üzerindeki etkisi araştırılmıştır. Atık lastik katkı miktarına bağlı olarak yalıtımda sağlanan minimum iyileşme aralıkları; harç numuneler için % 6.5–13.3 ve briket numuneler için ise % 4.5 – 10.8 olarak bulunmuştur. Diğer taraftan, atık lastik katkısı ile briket numunelerin mekanik özelliklerinde önemli seviyede azalmalar, fiziksel özelliklerde ise bazı iyileşmeler söz konusudur. En çarpıcı iyileşme; briket ağırlığının % 29’a varan oranlarda azalmasıdır.

Investigation of thermo-mechanical behaviors of scrap rubber added mortar plate and bricks

In this study, the effect of adding scrap automobile tire pieces at appropriate conditions and geometries on the thermo-mechanical properties of mortars are investigated. The front surface with steel belt and the side surface without steel belt of a scrap automobile tire are used with the different purposes. The tire parts with steel belt are placed into mortar after cutting them in stripe form. The tire parts without steel belt are used as aggregate in bricks after grinding into granule dimensions. The effect of different amounts and arrangements of strip rubbers on the thermal insulation performance are investigated for mortar specimens. The amount of added-granule rubbers on thermal insulation performance and physico-mechanical properties are examined for the bricks. The percentage-wise improvements in thermal insulation performance have nearly varied between 6.5-13.3 % and 5- 11 % for mortar and brick specimens, respectively, depending on the amount of rubber used. The addition of scrap rubber has significantly decreased the mechanical properties but provided some degree of improvements in physical properties. The most striking improvement in physical properties is the decrease of the unit weight of bricks up to % 29.

___

  • 1. Fontana, J. ve Bartholomew, J., “Use of Concrete Polymer Materials in the Transportation Industry, Applications of Polymer Concrete", American Concrete Institute, SP-69Detroit, 21-30, 1981.
  • 2. Topçu, İ.B., “The Properties of Rubberized Concretes”, Cement and Concrete Research, Cilt 25, 304-310, 1995.
  • 3. Rad, F., Rubberized Concrete, New Horizons in Construction Materials, Envo Publishing Company, No:1, 287-292, 1992.
  • 4. Khatib, Z.K., Bayomy, F.M., “Rubberized Portland Cement Concrete”, ASCE Journal of Materials in Civil Engineering, Cilt 11, 206– 213, 1999.
  • 5. Fedroff, D., Mechanical Properties of Concrete with Ground Rubber, MSc thesis, North Carolina State University, Raleigh, 1995.
  • 6. Fedroff, D., Ahmad, S. ve Savas, B.Z., “Mechanical Properties of Concrete with Ground Waste Tire Rubber”, Transportation Research Record, No. 1532, 66–72, 1996.
  • 7. D. Raghavan, H. ve Ferraris, C.F., “Workability, Mechanical Properties and Chemical Stability of A Recycled Tire Rubber-Filled Cementitious Composite”, Journal of Materials Science, Cilt 33, 1745–1752, 1998.
  • 8. Eldin, N.N. ve Senouci, A.B., “Rubber-Tire Particles as Concrete Aggregates”, ASCE Journal of Materials in Civil Engineering, Cilt 5, 478–496, 1993.
  • 9. Ali, N.A., Amos, A. ve Roberts, M., “Use of Ground Rubber Tyres in Portland Cement Concrete,” Proc. Int. Conf. Concrete 2000, University of Dundee, UK, 379-390, 1993.
  • 10. Fattuhi, N.I. ve Clark, L.A., “Cement-based Materials Containing Shredded Scrap Truck Tyre Rubber,” Journal of Construction and Building Materials, Cilt 10, 229-236, 1996.
  • 11. Goulias, D.G. and Ali, NA., “Non-destructive Evaluation of Rubber Modified Concrete,” In Proceedings, Special Conference ASCE, New York, 111-120, 1997.
  • 12. Topcu, I.B. ve Avcular, N., “Analysis of Rubberized Concrete as A Composite Material”, Cement and Concrete Research, Cilt 27, 1135– 1139, 1997.
  • 13. Topcu, I.B. ve Avcular, N., “Collision Behaviors of Rubberized Concrete”, Cement and Concrete Research, Cilt 27, 1893–1898, 1997.
  • 14. Topcu, I.B., ve Ozcelikors, Y., “Rubberised Concrete,” Akdeniz University, Isparta Engineering Faculty, 7th Engineering Week, Isparta, Turkey, 1991.
  • 15. Guoqiang, L., Gregory, G., John, E., Christopher, A., Michael, A.S. ve Su, S.P., “Waste Tire Fiber Modified Concrete”, Composites: Part B, Cilt 35, 305–312, 2004.
  • 16. Pierce, C.E. ve Blackwell, M.C., “Potential of Scrap Tire Rubber as Lightweight Aggregate in Flowable Fill”, Waste Management, Cilt 23, 197–208, 2003.
  • 17. Tantala, M.W., Lepore, J.A. and Zandi, I., “Quasi-elastic Behaviour of Rubber Included Concrete,” In Proceedings, 12th International Conference on Solid Waste Technology and Management, 1996.
  • 18. Savas, B. Z., Ahmad, S.ve Fedroff, D., “Freezethaw Durability of Concrete with Ground Waste Tire Rubber,” Transportation Research Record, No. 1574, 80-88, 1996.
  • 19. Turgut, P. ve Yeşilata, B., “Physico-Mechanical and Thermal Performances of Newly Developed Rubber-Added Bricks”, Energy and Buildings, Cilt 40, 679-688, 2008.
  • 20. Terry, A.G., “Designing of Building Products Made with Recycled Tires”, Contractor’s Report to the Integrated Waste Management Board, 2004.
  • 21. TS 706 EN 12620, Beton Agregaları, Türk Standartları Enstitüsü, Ankara, 2003.
  • 22. Yesilata, B. ve Turgut, P., “A Simple Dynamic Measurement Technique for Comparing Thermal Insulation Performances of Anisotropic Building Materials“, Energy and Buildings, Cilt 39, 1027-1034, 2007.
  • 23. Yeşilata, B., Turgut, P. ve Işıker, Y., “Kompozit Yapı Malzemelerinde Isıl Özellik Ölçümü-1: Mevcut Ölçüm Tekniklerin İrdelenmesi”, Mühendis ve Makina, Cilt 48, 2-9, 2007.
  • 24. Turgut P., Yeşilata B. ve Işıker, Y., “Kompozit Yapı Malzemelerinde Isıl Özellik Ölçümü-2: Hurda Lastik Katkılı Betonlar için Ölçüm Sonuçları”, Mühendis ve Makina, Cilt 48, 33- 39, 2007.
  • 25. ASTM C 67, 2003, Standard Test Methods for Sampling and Testing Brick and Structural Clay Tile, ASTM Standards, Philadelphia.
  • 26. BS 6073: Part 1, 1981, Precast Concrete Masonry Units: Specification for Precast Concrete Masonry Units. British Standards Institution.
  • 27. TS 705, Solid Brick and Vertically Perforated Bricks, Turkish Standard Institution, Ankara, 1985.
  • 28. ASTM C 129, 2006, Standard Specification for Non-Load-Bearing Concrete Masonry Units, ASTM Standards, Philadelphia.
  • 29. ASTM C 140, 2006, Methods of Sampling and Testing Concrete Masonry Units, ASTM Standards, Philadelphia.