Aktif kefir biyokütlesi ile Remazol Turuncu RGB boyar maddesinin konvansiyonel ve sonikasyon destekli biyosorpsiyonu

Aktif kefir biyokütleleri ile Remazol Turuncu RGB (RO) boyar maddesinin sulu çözeltilerden konvansiyonel ve sonikasyon destekli biyosorpsiyon yöntemleri ile giderimi incelenmiştir. Kefir biyokütlesi SEM, FTIR ve BET analizleri ile karakterize edilmiştir. Biyosorpsiyon deneyleri kesikli olarak gerçekleştirilmiş ve pH, başlangıç boyar madde konsantrasyonu ve sıcaklığın boyar madde giderimi üzerindeki etkileri araştırılmıştır. RO boyar maddesinin gideriminin iki biyosorpsiyon prosesinde de sıcaklığın artması, başlangıç pH değerinin ve başlangıç boyar madde konsantrasyonunun azalması ile arttığı belirlenmiştir. Çalışılan tüm proses koşullarında konvansiyonel biyosorpsiyon yöntemine kıyasla sonikasyon destekli biyosorpsiyon ile daha yüksek boyar madde giderim verimleri elde edilmiş ve biyosorpsiyonun dengeye ulaşma süreleri önemli ölçüde azalmıştır. pH 2 değerinde, 25°C sıcaklık ve 100 mg/L başlangıç boyar madde konsantrasyonunda, konvansiyonel ve sonikasyon destekli biyosorpsiyon işlemleri ile sırası ile % 74,62 ve % 95,18 boyar madde giderimi elde edilmiş ve biosorpsiyonların dengeye sırası ile 210 ve 45 dakikada ulaştığı gözlemlenmiştir. Gerçekleştirilen modelleme çalışmaları sonucunda konvansiyonel biyosorpsiyon prosesinin yalancı-birinci mertebe kinetik modeli ile, sonikasyon destekli biyosorpsiyon prosesinin yalancı-ikinci mertebe kinetik modeli ile, biyosorpsiyon dengesinin ise her iki proses için de Langmuir izoterm modeli ile ifade edilebileceği saptanmıştır. Çalışma sonuçları kefir biyokütlelerinin boyar madde giderimi için iyi bir biosorbent, sonikasyonun canlı organizmalarla biyosorpsiyon proseslerinin iyileştirilmesi için etkili ve yararlı bir yöntem olduğunu göstermiştir.

Conventional and sonication-assisted biosorption of Remazol Orange RGB dye by active kefir biomass

Conventional and sonication-assisted biosorption of Remazol Orange RGB (RO) dye from aqueous solutions with active kefir biomass was investigated. SEM, FTIR and BET analyses were used to characterise the biomass. Biosorption experiments were carried out in batch mode and the effects of pH, initial dye concentration and temperature on dye removal were examined. Biosorption of dye increased with the rise in temperature and the reduce in initial pH and initial concentration of dye in both processes. At all examined process conditions due to the assistance of sonication higher biosorption yields were obtained and the time for biosorption to reach equilibrium was significantly reduced. 74.62% and 95.18% dye removals were achived at pH 2, initial dye concentration of 100 mg L-1 and 25°C for conventional and sonication assisted biosorption that the equilibrium was attained respectivly in 210 and 45 minutes. Modelling studies showed that the biosorption kinetics of dye by conventional and sonication assisted process could be expressed respectively with the pseudo first and pseudo second order models, while the biosorption equilibrium for both processes could be expressed with the Langmuir isotherm model. The results demonstrated that the kefir biomass is an effective biosorbent for dye removal and sonication is an effective and useful method to improve the biosorption processes with living organisms.

___

  • Khatri A., Peerzada M. H., Mohsin M., White M., A review on developments in dyeing cotton fabrics with reactive dyes for reducing effluent pollution, Journal of Cleaner Production, 87(1), 50–57, 2015.
  • Karim E., Dhar K., Hossain T., Decolorization of Textile Reactive Dyes by Bacterial Monoculture and Consortium Screened from Textile Dyeing Effluent, Journal of Genetic Engineering and Biotechnology, 16, 375-380, 2018.
  • Carr C., Chemistry of the Textile Industry, First Edition, Chapman and Hall GmbH, Glasgow, 1995.
  • Drumond Chequer F.M., Rodrigues de Oliveira G.A., Anastácio Ferraz E.R., Carvalho Cardoso J., Boldrin Zanoni M.V., Palma de Oliveira D., Textile Dyes: Dyeing Process and Environmental Impact, Editör: Melih Gunay, Eco Friendly Textile Dyeing and Finishing, Intech Open Limited, London., 151-176, 2013.
  • Ooi J., Lee L.Y., Hiew B.Y.Z., Thangalazhy-Gopakumar S., Lim S.S., Gan S., Assessment of fish scales waste as a low cost and eco-friendly adsorbent for removal of an azo dye: Equilibrium, kinetic and thermodynamic studies, Bioresour. Technol., 245, 656-664, 2017.
  • Lellis B., Fávaro-Polonio C.Z., Pamphile J.A., Polonio J.C., Effects of textile dyes on health and the environment and bioremediation potential of living organisms, Biotechnol. Res. Innov., 3, 275-290, 2019.
  • Islam M.R., Mostafa M.G., Textile Dyeing Effluents and Environment Concerns, J. Environ. Sci. & Natural Resources, 11, 131-144, 2018.
  • Kopaç T., Sulu E., Comparison of the adsorption behavior of Basic Red 46 textile dye on various activated carbons obtained from Zonguldak coal, Journal of the Faculty of Engineering and Architecture of Gazi University, 34(3), 1227-1240, 2019.
  • Zhu J., Li J., Li Y., J. Guo, Yu X., Peng L., Han B., Zhu Y., Zhang Y., Adsorption of phosphate and photodegradation of cationic dyes with BiOI in phosphate-cationic dye binary system, Sep. Purif. Technol., 223,196-202, 2019.
  • Okur M., Dolunay D., Koyuncu E., The evaluation of hydroxyapatite synthesized from waste eggshell in the adsorption of Remazol N.Blue RGB dye, Journal of the Faculty of Engineering and Architecture of Gazi University, 35(1), 419-430, 2020.
  • Cervantes F.J., Dos Santos A.B., Reduction of azo dyes by anaerobic bacteria: microbial and biochemical aspects, Rev. Environ. Sci. Biotechnol., 10, 125-137, 2011.
  • Esmaeli A., Kalantari M., Bioremoval of an azo textile dye, Reactive Red 198 by Aspergillus flavus, World J. Microbiol. Biotechnol., 8, 1125-1131, 2012.
  • Joshi P.A., Jaybhaye S., Mhatre K., Biodegradation of dyes using consortium of bacterial strains isolated from textile effluent, Eur. J. Exp. Biol., 5, 36-40, 2015.
  • Asfaram A., Ghaedi M., Hajati S., Goudarzi A., Dil E.A., Screening and optimization of highly effective ultrasound assisted simultaneous adsorption of cationic dyes onto Mn-doped Fe3O4-nanoparticle-loaded activated carbon, Ultrason. Sonochem., 34, 1-12, 2017.
  • Ealias A.M., Saravanakumar M.P., A critical review on ultrasonic assisted dye adsorption: Mass transfer, half-life and half-capacity concentration approach with future industrial perspectives, Crit. Rev. Env. Sci. Tech., 49 1959-2015, 2019.
  • Zhang W., Liang Y., Wang J., Zhang Y., Gao Z., Yang Y., Yang K., Ultrasound-assisted adsorption of Congo red from aqueous solution using Mg-Al-CO3 layered double hydroxide, Appl. Clay. Sci., 174, 100-109, 2019.
  • Djelloul C., Hasseine A., Ultrasound-assisted removal of methylene blue from aqueous solution by milk thistle seed, Desalination and Water Treatment, 51, 5805-5812, 2013.
  • Apar D.K., Demirhan E., Ozel B., Ozbek B., Kefir grain biomass production: influence of different culturing conditions and examination of growth kinetic models, J. Food Process. Eng., 40, e12332, 2017.
  • Erdoğdular A.O., Apar D.K., Biosorption of reactive dye Remazol Ultra Red RGB by metabolically active kefir biomass. Journal of the Faculty of Engineering and Architecture of Gazi University, 36(2),1055-1073, 2021.
  • Jenab A., Roghanian R., Emtiazi G., Ghaedi K., Manufacturing and structural analysis of antimicrobial kefiran/polyethylene oxide nanofibers for food packaging, Iran. Polym. J., 26, 31-39, 2017.
  • Chen Z., Shi J.L., Yang X.J., Nan B., Liu Y., Wang Z.F., Chemical and physical characteristics and antioxidant activities of the exopolysaccharide produced by Tibetan kefir grains during milk fermentation, Int. Dairy J., 43, 15-21, 2015.
  • Radhouani H., Gonçalves C., Maia F.R., Oliveira J.M., Reis R.L., Kefiran biopolymer: evaluation of its physicochemical and biological properties, J. Bioact. Compat. Polym., 33, 461–478, 2018.
  • Bartošová A., Blinová L., Sirotiak M., Michalíková A., Usage of FTIR-ATR as non-destructive analysis of selected toxic dyes, Res. Pap. Fac. Mater. Sci. Technol. Slovak Univ. Technol.,25, 103–111, 2017.
  • Das A., Mishra S., Removal of textile dye reactive green- 19 using bacterial consortium: process optimization using response surface methodology and kinetics study, J. Environ. Chem. Eng., 5, 612–627, 2017.
  • Ekambaram S.P., Perumal S.S., Annamalai U., Decolorization and biodegradation of remazol reactive dyes by Clostridium species, 3 Biotech, 6(20), 1-8, 2016.
  • Gad H.M.H., El-Hakim A., Daifullah A.M., Impact of surface chemistry on the removal of indigo carmine dye using apricot stone active carbon, Adsorpt. Sci. Technol., 25, 327-341, 2007.
  • Wang X.S., Zhou Y., Jiang Y., Removal of methylene blue from aqueous solution by non-living biomass of marine algae and freshwater macrophyte, Adsorpt. Sci. Technol., 26, 853-863, 2009.
  • Sundaram J., Mellein B.R., Mitragotri S., An experimental and theoretical analysis of ultrasound-induced permeabilization of cell membranes, Biophys. J., 84, 3087-3101, 2003.
  • Dai C.H., Xiong F., He R.H., Zhang W.W., Ma H., Effects of low-intensity ultrasound on the growth, cell membrane permeability and ethanol tolerance of Saccharomyces cerevisiae, Ultrason. Sonochem., 36, 191-197, 2017.
  • Ajenifuja E., Ajao J.A., Ajayi E.O.B., Adsorption isotherm studies of Cu(II) and Co(II) in high concentration aqueous solutions on photocatalytically modified diatomaceous ceramic adsorbents, Appl. Water Sci., 7, 3793-3801, 2017.
  • Sawasdee S., Watcharabundit P., Equilibrium, kinetics and thermodynamic of dye adsorption by low cost adsorbents, Int. J. Chem. Eng. Appl., 6, 444-449, 2015.