Fenolik Bileşiklerin Tayini için Polifenol Oksidaz Temelli Amperometrik Enzim Elektrot Hazırlanması

Bu çalışmada, fenolik bileşiklerin tayini için polimer film temelli amperometrik enzim elektrotlar hazırlandı. Bu amaçla, o-fenilendiamin (o-PD) veya o-PD ve 3-metiltiyofen (3-MT) içeren asetonitril-su karışımı kullanılarak platin elektrotlar elektropolimerizasyon yoluyla modifiye edildi. Hazırlanan Pt/PoPD ve Pt/PoPD-3MT elektrotlara polifenol oksidaz (POx) enzimi immobilize edildi ve elektrotların pirokateşole duyarlıkları belirlendi. Daha yüksek duyarlığın elde edildiği Pt/PoPD-3MT/POx elektrot ile çalışma koşulları ve performans faktörleri çalışıldı. Pt/PoPD-3MT/POx elektrot için optimum tampon cinsi, tampon derişimi, pH\'sı, sıcaklık ve çalışma potansiyeli sırasıyla fosfat; 0,10 M; 7,0; 25°C ve Ag/AgCl\'e karşı -0,20 V olarak belirlendi. Enzim elektrodun doğrusal çalışma aralığı 1,96×10–6- 3,50×10-5M olarak belirlendi. Enzim

Preparation of Amperometric Enzyme Electrode Based on Polyphenol Oxidase for Determination of Phenolic Compounds

In this study, amperometric enzyme electrodes based on polymer film for determination phenolic compounds were prepared. For this purpose platin electrodes were modified by electropolymerization using asetonitril-water mixture containing o-phenylenediamine (o-PD) or o-phenylenediamine C and -0.20 V (vs. Ag/AgCl) respectively. The linear working range of 1.96×10-6-3.5×10-5 M. Response time, reusability, life time, and amperometric responses to other phenolic compounds were also investigated.and 3-methylthiophene (3MT). Polyphenol oxidase was immobilized onto Pt/PoPD and Pt/PoPD-3MT electrodes and amperomeric responses to pyrocatechol were investigated. Pt/PoPD-3MT/POx electrode that obtained higher sensitivity was used for determination of working conditions and performance factors. Optimum type of buffer, buffer concentration, pH, temperature and working potential were determinated as phos

___

  • Ameer, Q. and Adeloju, S.B. (2009). Development of a potentiometric catechol biosensor by entrapment of tyrosinase within polyprrole film. Sensors and Actuators B, 140, 4-11.
  • Bagheri, H., Mohammadi, A. and Salemi, A. (2004). On-line trace enrichment of phenolic compounds from water using a pyrrole-based polymer as the solidphase extraction sorbent coupled with high-performance liquid chromatography, Analytica Chimica Acta, 513, 445–449.
  • Cosnier, S., Fologea, D., Szunerits, S. and Marks R.S. (2000). Poly(dicarbazole-Nhyroxysuccinimide) film: a new polymer for the reagentless grafting of enzymes and redox mediators, Electrochemistry Communications, 2, 827-831.
  • Curulli, A. Kelly, S., O’Sullivan, C., Guilbault, G.G. and Palleschi, G. (1998). A new interference-free lysine using a non-conducting polymer film. Biosensors and Bioelectronics, 13, 1245-1250.
  • Dai, Y.Q., Zhou, D.M. and Shiu, K.K. (2006). Permeability and permselectivity of polyphenilenedimine films synthesized at palladium disk electrode. Electrochimica Acta, 52, 297-303.
  • Dempsey, E., Diamond, D. and Collier, A. (2004). Development of a biosensor for endocrine disrupting compounds based on tyrosinase entrapped within a poly(thionine ) film. Biosensors and Bioelectronics, 20, 367-377.
  • Fan, Q., Shan, D., Xue, H., He, Y. and Cosnier, S. (2007). Amperometric phenol biosensor based on laponite clay-chitosan nanocomposite matrix. Biosensors and Bioelectronics, 22, 816-821.
  • Garjonyte, R. and Malinauskas, A. (1999). Amperometric glucose biosensor based on glucose oxidase immobilized in poly(o-phenlylenediamine) layer. Sensors and Actuators B, 56, 85-92.
  • Gupta, G., Rajendran, V. and Atanassov, P. (2003). Laccase biosensor on monolayermodified gold electrode. Electroanalysis, 15 (20), 1577-1583.
  • Imabayashi, S., Kong, Y. and Watanabe, M. (2001). Amperometric biosensor for polyphenol based on horseradish peroxidase immobilized on gold electrodes. Electroanalysis, 13(5), 408-412.
  • Kochana, J., Nowak, P., Jarosz-Wilkolazka, A.J., Bioeron, M. (2008). Tyrosinase/laccase bienzyme biosensor for amperometric determination of phenolic compounds. Microchemical Journal, 89, 171-174.
  • Li, Y.F., Liu, Z.M., Liu, Y.L., Yang, Y.H. Shen, G.L., Yu, R.Q. (2006). A mediator-free phenol biosensor based on immobilizing tyrosinase to ZnO nanoparticles. Analytical Biochemistry, 349, 33-40.
  • Liu, S., Yu, J. and Ju, H. (2003). Renewable phenol biosensor based on a tyrosinasecolloidal gold modified carbon paste electrode. Journal of Electroanalytical Chemistry, 540, 61-67.
  • Lupetti, K. O., Rocha F. R.P. and Fatibello-Filho, O. (2004). An improved flow system for phenols determination exploiting multicommutation and long pathlength spectrophotometry. Talanta, 62, 463–467.
  • Mailley, P., Cummings E.A., Mailley, S. Cosnier, S. Eggins, B.R. and McAdams E. (2004). Amperometric detection of phenolic compounds by polypyrrole-based composite carbon paste electrodes. Bioelectrochemistry, 63, 291-296.
  • Malitesta, C., Palmisano, F., Torsi, L. and Zambonin, P.G. (1990). Glucose fastresponse amperometric sensor based on glucose oxidase immobilized in an electropolimerized poly(o-phenylenedimine) film. Analytical Chemistry, 62, 2735-2740.
  • Myler, S. Eaton, S. Higson, S.P.J. (1997). Poly(o-phenylenedimine) ultra-thin polymerfilm composite membranes for enzyme electrodes. Analytica Chimica Acta. 357, 55-61.
  • Pedano, M.L. and Rivas, G.A. (2000). Amperometric biosensor for the quantification of gentisic acid using polyphenol oxidase modified carbon paste electrode. Talanta, 53, 489-495.
  • Quan, D. and Shin, W. (2004). Amperometric detection of catechol and catecholamines by immobilized laccase from deniLite. Electroanalysis, 16 (19), 1576-1582.
  • Rajesh, Takashima, W. and Kaneto, K. (2004). Amperometric phenol biosensor based on covalent immobilization of tyrosinase onto an electrochemically prepared novel copolymer poly(N-3-aminoproply pyrrole-co-pyrrole) film. Sensors and Actuators B, 102, 271-277.
  • Rajesh and Kaneto, K. (2005). A new tyrosinase biosensor based on covalent immobilization of enyzme on N-(3-aminoproply) pyrrole polymer film. Current Applied Physics, 5, 178–183.
  • Rajesh, Pandey, S.S., Takashima, W. and Kaneto, K. (2005). Simultaneous coimmobilization of enyzme and a redox mediator in polypyrrole film for fabrication of an amperometric phenol biosensor. Current Applied Physics, 5, 184-188.
  • Rothwell, S.A., Killoroan, S.J., Neville, E.M., Crotty, A.M. and O’Neill, R.D. (2008).
  • Poly(o-phenylenedamine) electrosynthesized in absence of added background electrolyte provides an new permselectivity benchmark for biosensor. Electrochemistry Communications, 10, 1078-1081.
  • Serra, B., Benito, B., Agüi L., Reviejo, A.J. and Pingarron, J.M. (2001). GraphideTeflon-peroxidase composite electrochemical biosensors. A tool for wide detection of phenolic compounds. Electroanalysis, 13 (8/9), 693-70
  • Shan, D., Zhu, M., Han, E., Xue, H. and Cosnier, S. (2007). Calcium carbonate nanoparticles: A host for the construction of highly sensivite amperometric phenol biosensor. Biosensors and Bioelectronics, 23, 648-654.
  • Shan, D., Zhang, J., Xue, H.G., Zhang, Y.C., Cosnier, S. and Ding, S.N. (2009). Polycyrstalline bismuth oxide films for development of amperometric biosensensor. Biosensors and Bioelectronics, 24, 2671-3676.
  • Tatsuma, T. and Sato, T. (2004). Self-wiring from tyrosinase to an electrode with redox polymer. Journal of Electroanalytical Chemistry, 572, 15-19.
  • Tembe, S., Karve, M., Inamdar, S., Haram, S., Melo, J. and D’Souza, S. (2006). Development of electrochemical biosensor based on tyrosinase immobilized in composite biopolymeric film. Analytical Biochemistry, 349, 72-77.
  • Timur, S., Pazarlıoğlu, N., Pilloton, R. and Telefoncu, A. (2004). Thick film sensors based on laccases from different sources immobilized in polyaniline matrix. Sensors and Actuators B, 97, 132-136.
  • Tsai, Y.C. and Chiu, C.C. (2007). Amperometric biosensors based on multiwalled carbon nanotube-Nafion-tyrosinase nanobiocomposites for the determination of phenolic compounds. Sensors and Actuators B, 125, 10-16.
  • Vérdine, C., Fabiano, S. and Tran-Minh, C. (2003). Amperometric tyrosinase based biosensor using an electrogenerated polythiophene film as an entrapment support. Talanta, 59, 535-544.
  • Vianello, F., Cambria, A, Ragusa, S., Cambria, M.T. Zennaro, L. and Rigo, A. (2004). A high sensitivity ampemetric biosensor using a monomolecular layer of accase as biorecognition element. Biosensors and Bioelectronics, 20 (2), 315- 321.
  • Vidal, J.C., Garcia, E. and Castillo, J.R. (1999a). In situ preparation of a cholesterol biosensor: entrapment of cholesterol oxidase in an overoxidized polypyrrole film electrodeposited in a flow system Determination of total cholesterol in serum. Analytical Chimica Acta, 385, 213-222.
  • Vidal, J.C., Garcia, E. and Castillo, J.R. (1999b). In situ preparation of overoxidized PPy/oPPD bilayer biosensor for the determination of glucose and cholesterol in serum. Sensors and Actuators B, 57, 219-226.
  • Vidal, J.C., Garcia-Ruiz, E. and Castillo, J.R. (2003). Recent Advances in Electropolymerized Conducting Polymers in Amperometric Biosensors, Microchimica. Acta 143, 93–111.
  • Vidal, J.C., Espuelas, J., Garcia-Ruiz, E. and Castillo, J.R. (2004). Amperometric cholesterol biosensors based on the electropolimerization of pyrrole and the electrocatalytic effect of Prussian-Blue layers helped with self-assebled monolayers. Talanta, 64, 655-664.
  • Wang, B., Zhang, J. and Dong, S. (2000). Silica sol-gel composite film as an encapsulation matrix for the construction of an amperometric tyrosinase-based biosensor. Biosensors and Bioelectronics, 15, 397-402.
  • Wang, G., Xu, J.J, Ye, L.H., Zhu, J.J. and Chen, H.Y. (2002). Highyl sensitive sensors based on the immobilization of tyrosinase in chitosan, Bioelectrochemistry, 57, 33-38.
  • Wang H.S., Li, T.H., Jia, W.L and Xu, H.Y. (2006) Highly selective and sensitive determination of dopamine using a Nafion/carbon nanotubes coated poly(3- methylthiophene) modified electrode. Biosensors and Bioelectronics, 22, 664– 669
  • Wang, P. Liu, M. and Kan, J. (2009). Amperometric phenol biosensor based on polyaniline. Sensors and Actuators B, 140, 577-584.
  • Yang, S., Li, Y., Jiang, X., Chen, Z. and Lin, X. (2006). Horseradish peroxidise biosensor based on layer-by-layer technique for the determination of phenolic compounds. Sensors and Actuators B, 114, 774-780
  • Zhang, T., Tian, B., Kong, J., Yang, P. Liu, B. (2003). A sensitive mediator-free tyrosinase biosensor based on an inorganic-organic hybrid titania sol-gel matrix. Analytica Chimica Acta, 489, 199-206.