Dopamin ve Ürik Asitin Birinin Varlığında Diğerinin Kare Dalga Voltametrisi ile Tayini

Bu çalışmada çeşitli destek elektrolit ortamlarında DA ve ÜA' nın yükseltgenme davranışları incelenmiş, pH 2,5 H2SO4 ve pH 7,2 fosfat tamponunun uygun olduğuna karar verilmiştir. pH 2,5 H2SO4 ortamında DA ve ÜA' nın sırasıyla +0,480 V, +0,620 V' da ki, fosfat tamponunda da sırasıyla +0,140 V, +0,270 V' da ki yükseltgenme pikleri kullanılmıştır. Her iki ortamda farklı [DA] / [ÜA] oranları çalışılmıştır. Sentetik numune için, pH 2,5 H2SO4 ortamında DA ve ÜA için % hata sırasıyla -0,41 ve 0,27, pH 7,2 fosfat tamponu ortamında aynı numune için % hata sırasıyla -0,61 ve -0,14 olarak bulunmuştur. pH 2,5 H2SO4 ortamında DA ve ÜA için gözlenebilme sınırı (LOD) sırasıyla 2,16 × 10-8 M ve 4,14 × 10-8 M, tayin sınırı (LOQ) ise 6,48 × 10-8 M ve 1,24 × 10-7 M olarak bulunmuştur. pH 7,2 fosfat tamponu ortamında DA ve ÜA için gözlenebilme sınırı (LOD) sırasıyla 2,28 × 10-8 M ve 2,13 × 10-8 M, tayin sınırı (LOQ) 6,84 × 10-8 M ve 6,39 × 10-8 M olarak bulunmuştur. Bu yönteme çeşitli anyon ve katyonların

The Determination of Dopamine and Uric Acid with the Presence of Other Using Square Wave Voltammetry

Initially the electrochemical behavior of dopamine (DA) and uric acid (UA) in different supporting electrolytes was investigated. It was found that the most suitable supporting electrolytes were pH 2.5 H2SO4 and pH 7.2 phosphate buffer. The analysis of DA and UA in acidic medium was carried out by the use of their oxidation peaks observed at +0.480 V and +0.620 V, respectively. The analysis of the phosphate buffer medium were carried out by the use of the oxidation peaks of DA and UA appeared at +0.140 V and +0.270 V, respectively. The studies carried out with different [DA] / [UA] ratios gave acceptable results for both media. The synthetic sample was analyzed. The error was -0.41 % for DA and 0.27 % for UA in acidic media and -0.61 % for DA and -0.14 % for UA in basic media. The limits of detection (LOD) were found as 2.16 × 10-8 M and 4.14 × 10-8 M in acidic media, 2.28 × 10-8 M and 2.13 × 10-8 M in basic media for DA and UA, respectively.

___

  • Ardakani, M. M., Akrami, Z., Kazemian, H., Zare, H.R. (2006). Electrocatalytic characteristics of uric acid oxidation at graphite–zeolite-modified electrode doped with iron (III). J. Electroanal. Chem., 586, 31–38.
  • Ardakani, M. M., Beitollahi, H., Ganjipour, B., Naeimi, H., Nejati, M. (2008). Electrochemical and catalytic investigation of dopamine and uric acid by modified carbon nanotube paste electrode. Bioelecterochemistry, 75, 1-8.
  • Bishop, E. and Hussein, W. (1984). Anodic voltammetry of dopamine, noradrenaline and related compounds at rotating disc electrodes of platinum and gold. Analyst, 109, 627-632.
  • Bravo, R., Hsueh, Ch., Jaramillo, A., Brajter-Toth, A. (1998). Possibilities and limitations in miniaturized sensor design for uric acid. Analyst, 123, 1625-1630.
  • Cao, X., Luo, L., Ding, Y., Yu, D., Gao, Y., Meng, Y. (2009). Simultaneous determination dodecylbenzenesulfonate composite film modified glassy carbon electrode. J. Appl. Electrochem., 39, 1603–1608. and uric acid on nafion/sodium
  • Deletioğlu, D., Hasdemir, E., and Solak, A. O. (2010). Simultaneous Determination of dopamine and uric acid in the presence of ascorbic acid at the indole-3- carboxaldehyde modified glassy carbon electrode. Current Analytical Chemistry, 6(3), 203-208.
  • Dilena, B.A., Peake, M.J., Pardue, H.L., Skoug, J.W. (1986). Direct ultraviolet method for enzymatic determination of uric acid, with equilibrium and kinetic data- processing options. Clin. Chem., 32, 486-491.
  • Dutt, J.S.N., Cardosi, M.F., Livingstone, C., Davis, J. (2005). Diagnostic implications of uric acid in electroanalytical measurements. Electroanalysis, 17, 1233-1243.
  • Gilmartin, M.A.T., Hart, J.P. (1992). Voltammetric and amperometric behaviour of uric acid at bare and surface-modified screen-printed electrodes: studies towards disposable uric acid sensor. Analyst, 117, 1299–1303.
  • Gilmartin, M.A., Hart, J.P. (1994). Amperometric biosensor for uric acid based on a chemically modified screen-printed carbon electrode coated with cellulose acetate and uricase. Analyst, 119, 833-840.
  • Guan, Y., Wu, T., Ye, J. (2005). Determination of uric acid and p -aminohippuric acid in human saliva and urine using capillary electrophoresis with electrochemical detection: Potential application in fast diagnosis of renal disease. J. Chromatogr. B, 821, 229-234.
  • Hawley, M.D., Tatawawadi, S.V., Piekarski, S., and Adams, R. N. (1967). Electrochemical studies of the oxidation pathways of catecholamines. J. Am. Chem. Soc., 89, 447- 450.
  • Huang, X., Li, Y., Wang, P., Wang, L. (2008). Sensitive Determination of Dopamine and Uric Acid by the Use of a Glassy Carbon Electrode Modified with Poly(3- methylthiophene)/Gold Nanoparticle Composites. Anal. Sci., 24, 1563-1568.
  • Lane, R.F., Blaha, C.D. (1990). Detection of catecholamines in brain tissue: surface- modified electrodes enabling in vivo investigations of dopamine function. Longmuir, 6, 56–65.
  • Lee, H.L., Chen, S.C. (2004). Microchip capillary electrophoresis with electrochemical detector for precolumn enzymatic analysis of glucose, creatinine, uric acid and ascorbic acid in urine and serum. Talanta, 64, 750-754.
  • Liu, C., Lu, G., Jiang, L., Jiang, L., Zhou, X. (2006). Study on the Electrochemical Behavior of Dopamine and Uric Acid at a 2-Amino-5-mercapto-[1,3,4] Triazole Self-Assembled Monolayers Electrode. Electroanalysis, 18, 291 – 297.
  • Liu, A., Honma, I., Zhou, H. (2007). Simultaneous voltammetric detection of dopamine and uric acid at their physiological level in the presence of ascorbic acid using poly(acrylic acid)-multiwalled carbon-nanotube composite-covered glassy-carbon electrode. Biosensors and Bioelectronics, 23, 74–80.
  • Lykkesfeldt, J. (2000). Determination of ascorbic acid and dehydroascorbic acid in biological samples by high-performance liquid chromatography using subtraction methods: reliable reduction with tris[2-carboxyethyl] phosphine hydrochloride. Anal. Biochem., 282, 89-93.
  • Miland, E., Ordieres, A.J.M., Blanco, P.T., Smyth, M.R., Fagain, C.O. (1996). Poly(o- aminophenol)-modified bienzyme carbon paste electrode for the detection of uric acid. Talanta, 43, 785-796.
  • Pachla, L.A., Reynolds, L.D., Wright, S., Kissinger, P.T. (1987). Analytical methods for measuring uric acid in biological samples and food products. J. Assoc. Offic. Anal. Chem., 70, 1-14.
  • Perello, J., Sanchis, P., Grases, F. (2005). Determination of uric acid in urine, saliva and calcium oxalate renal calculi by high-performance liquid chromatography/mass spectrometry. J. Chromatogr. B 824, 175-180.
  • Pileggi, V.J., Wybenga, D.R., Digiorgi, J. (1972). A one-tube serum uric acid method using phosphotungstic acid as protein precipitant and color reagent. Clin. Chim. Acta, 37, 141-149.
  • Popa, H., Kubota, Y., Donald, A. T., Fujishima, A. (2000). Selective Voltammetric and Amperometric Detection of Uric Acid with Oxidized Diamond Film Electrodes. Anal. Chem., 72, 1724-1727.
  • Rivas, G.A., Rubianes, M.D., Rodrígues, M.C., Ferreyra, N.F., Luque, G.L., Pedano, M.L., Miscoria, S.A., Parrado, C. (2007). Carbon nanotubes for electrochemical biosensing. Talanta, 74, 291-307.
  • Ross, M.A. (1994). Determination of ascorbic acid and uric acid in plasma by high- performance liquid chromatography. J. Chromatogr. B, 657, 197-200. Shahrokhian, S.,
  • Zare-Mehrjardi, H.R. (2007). Simultaneous voltammetric
  • determination of uric acid and ascorbic acidusing a carbon-paste electrode
  • modified with multi-walled carbon nanotubes/nafion and cobalt (II) nitrosalophen.
  • Electroanalysis, 19, 2234–2242.
  • Tatsuma, T., Watanabe, T. (1991). Oxidase/ peroxidase bilayer-modified electrodes as sensors for lactate, pyruvate, cholesterol and uric acid. Anal. Chim. Acta, 242, 85– 89.
  • Thiagarajan, S., Tsai, T. H., Chen, S. M. (2009). Easy modification of glassy carbon electrode for simultaneous determination of ascorbic acid, dopamine and uric acid. Biosensors and Bioelectronics, 24, 2712–2715.
  • Wang, X., Jin, B., Lin, X. (2002). In-situ FTIR spectroelectrochemical study of dopamine at a glassy carbon electrode in a neutral solution. The Japan Soc. Anal. Chem., 12, 931- 933.
  • Wang, S., Du, L., Wang, L., Zhuang, H. (2004). Flow injection with inhibited chemiluminescence method for the determination of dopamine hydrochloride. Analytical Sciences, 20, 315-317.
  • Wang, P., Li, Y., Huang, X., Wang, L. (2007). Fabrication of layer-by-layer modified multilayer films containing choline and gold nanoparticles and its sensing application for electrochemical determination of dopamine and uric acid. Talanta, 73, 431–437.
  • Wightman, R.M., May, L.J., Michael, A.C. (1988). Detection of dopamine dynamics in the brain. Anal. Chem., 60, 769-779.
  • Yang, G., Tan, L., Shi, Y., Wang, S., Lu, X., Bai, H., and Yang, Y. (2009). Direct Determination of Uric Acid in Human Serum Samples Using Polypyrrole Nanoelectrode Ensembles. Bull. Korean Chem. Soc., 30(2), 454-458.
  • Ye, F., Nan, J., Wang, L., Song, Y., Kim, K. B. (2008). The ultrasonic electropolymerization triphenylporphrin (o-BrPETPP) film electrode and its electrocatalytic properties to dopamine oxidation in aqueous solution. Electrochimica Acta., 53, 4156–4160.
  • Yu, Z., Lin, X. Q. (2008). Simultaneous Detection of Dopamine and Uric Acid under Coexistence of Ascorbic Acid with DNA/Pt Nanocluster Modified Electrode. Chinese Journal of Chemistry, 26, 898-904.
  • Zhao, Y., Bai, J., Wang, L., XuHong, E., Huang, P., Wang, H., Zhang, L. (2006). Simultaneous electrochimical determination of uric acid and ascorbic acid using L- Cysteine self-assembled gold electrode. Int. J. Electrochem. Sci., 1, 363-37