Solar air heater with an inclined, flow crossing absorber

Eğik bir cam toplayıcı kanalından geçmekte olan hava, dikdörtgen kesitli , cam kanal içine, tekrar boylamasına çapraz yerleştirilen, siyaha boyanmış, delikli, bakır bir levha yardımı ile güneş enerjisi tarafından ısıtıldı. Kanalın boyutları; 18,5 cm en, 9,5 cm yükseklik ve 2,5 m uzunluk olup kanaldaki absorplama yüzeyi % 3 delikli idi. Yatışkın halde eğik abzorberli koşulda h2 (ort.) 23 W/(m2K) ve h3 (ort.) 150 W/(mK) değerleri tabana paralel yerleştirilen levha durumunda elde edilen h2 (ort.) 34 W/(m2K) ve h3 (ort.) 15 W/(m2K) değerleri ile kıyaslandığında deliklerin çevresinde yüksek türbülans ve bunun sonucunda da yüksek ısı aktarım katsayıları elde edildiği anlaşıldı. Absorberin eğik olduğu koşulda; teorik tüm ısı aktarım katsayısı $U_{lt}$ 7-14 W/(m2 K),verimliliği $eta$ c% 44 ile yüksek bir h3 elde edildi.

Akıma çapraz abzorberli, eğik, güneş enerjili hava ısıtıcısı

Air was solarly heated in an inclined , rectangular glass channel equipped with a black painted, perforated, inclined copper plate which was longitudinally crossing the flowing air in the collector channel. The dimensions of the channel were 18.5 cm width, 9.5 cm height and 2.5 m length with a 3 % perforation area of absorber plate fitting in the channel. Strong turbulence was achieved around the holes and virtually higher efficient heat transfer coefficients were obtained at the steady-state conditions as h2 (ave.) 23 W/(m2K) and h3 (ave.) 150 W/(m2K) when compared with h2 (ave.) 34 W/(m2K) and h3 (ave.) 15 W/(m2K) of parallel absorber at the bottom of the collector. in the case of inclined absorber plate a high h3 was obtained; with a theoretical overall heat transfer coefficient of $U_{lt}$: 7-14 W/(m2K) and (ave.) 44 % effıciency($eta$ c).

___

  • 1.Tamimi, A., Mass flow rate prediction of a thermosiphon solar air heater, The Canadian Journal of Chem.Eng., 68, 773-776,(1990)
  • 2.Klein, S.A., Calculation of flat-plate collector loss coefficients, J.Solar Energy, 17, 79-80,( 1975).
  • 3.Chakraverty,A., Das, S.K., Performance of an integrated array of solar collector modules for different air flow rates and flow organizations.Energy Convers. Mgmt., 30, (1), 29-39,(1990).
  • 4.Yeh, H.M., Theory of baffled solar air heaters, Energy, 17, (7), 697-702,( 1992).
  • 5.Das, S.K., Chakraverty, A., Performance of a solar collector with different glazing materials and their degradation under the condition prevailing in a solar collector, Energy Convers. Mgmt.,3, (3), 233-242 ,(1991)
  • 6.Giorgi, G.D., Fumagalli, S., Rizzi, G., Sharma,V.K., Design, development and experimental performance of solar collector storage system for space heating applications, Energy Convers. Mgmt., 31, (1), 75-93,( 1991).
  • 7.Parker, B.F., Lindley,M.R., Colliver, D.G. & Murphy, W.E., Thermal performance of three solar air heaters, Solar Energy, 51, (6), 467-479,( 1993).
  • 8.Raju, J.N., Comparative study of air heating solar collectors, Int. Journal of Energy Research, 15,469-471,( 1991).
  • 9.Soulayman, S.S., Theoretical and experimental study of a two channel air heater with perforated first absorber, Renewable Energy, 1, (3/4), 331-334,( 1991).
  • 10.Selçuk, M.K., Solar air heaters and their applications, Solar Energy Eng., Academic Press, New York, 155-182,( 1977).
  • 11.Arın ,G.,Kenet,F "Natural Convection Heal' Transfer To Air" , ULIBTK'95,G.Ü.M.M.F., Cilt I, 643-653,( 1995).
  • 12.Arın, G., Isı aktarımı, Gazi Üniversitesi Müh.Mim.Fak.Yayını, Ankara, 189-218,( 1987).
  • 13.Kreith, F., Black, W.Z., Basic heat transfer, Harper & Row Publishers,New York, 422-428,( 1980).
  • 14.Çakaloz, T., Slightly concentrating solar collectors, Solar Energy Utilization Fundamentals & Applications., June 23 - July 4, 302-314,( 1986).
  • 15.Kenet, F., Laminer akımlarda doğal dolanım etkisinin incelenmesi: Y.Lisans tezi, G.Ü.M.M.F., Maltepe, Ankara, 42-48,( 1994)