Lazer ile Kaplanan AA7075 Alüminyum Alaşımı Malzemelerin Aşınma ve İşlenebilirlik Özelliklerinin Araştırılması

Bu çalışmada, mekanokimyasal yöntemle sentezlenmiş ZrB2 nanoparçacıkları CO2 lazeri ile AA7075 alüminyum alaşımı yüzeyine kaplanmıştır. Lazer gücünün ve lazer tarama hızının kaplama tabakaları üzerindeki etkilerini belirlemek için iki farklı deney seti gerçekleştirilmiştir. İlk deney setinde 1000 mm/dak tarama hızı sabit tutularak 50, 70 ve 100 W lazer güçlerinde, diğer deney setinde ise 70 W lazer gücü sabit tutularak 300, 500 mm/dak tarama hızlarında kaplama deneyleri yapılmıştır. Kaplama tabakasının faz yapıları ve morfolojik özellikleri X-ışınları kırınım difraktometresi, taramalı elektron mikroskobu ve optik mikroskop ile incelenmiştir. Kaplama tabakalarının aşınma dayanımları ve sertlikleri ball-on-disk aşınma cihazı ve mikrosertlik cihazı ile belirlenmiştir. Daha sonra kaplanmış numunelerin işlenebilirlik özelliklerini tespit etmek için, numuneler sırasıyla aşındırıcılı su jeti, tel erozyon, lazer ve aşındırıcılı disk ile kesilerek karakterize edilmiştir. Kaplama işlemi sonrasında ana metalin sertliğinin 110 HV’den 190 HV’ye çıktığı tespit edilmiştir. Diğer yöntemlere kıyasla ısı girdisinin minimum olmasından dolayı aşındırıcılı su jeti ön plana çıkmasına rağmen, en az tahribat aşındırıcılı disk ile kesmede gözlenmiştir. Lazer yöntemiyle kaplanan numuneler için en uygun kesme yönteminin aşındırıcılı disk ile kesme yöntemi olduğu tespit edilmiştir.

Investigation of the Wear and Machinability Properties of Laser Coated AA7075 Aluminum Alloy Materials

In this study, ZrB2 nanoparticles which is synthesized by the mechanochemical method were coated on the surface of AA7075 aluminum alloy with CO2 laser. Two different experimental sets were performed to determine the effect of laser power and laser scanning speed on coating layers. At the first experimental set, the scanning speed of 1000 mm / min was kept constant, and experiments were performed at 50, 70 and 100W laser powers, in the other experiment set, 70W laser power was kept constant and experiments were performed at 300, 500 mm / min scanning speed. Phase structures and morphological properties of the coating layer were investigated by X-Ray diffractometer, scanning electron microscopy, and optical microscope. The wear resistance and hardness of the coating layers were determined by ball-on-disc wear device and microhardness device. To determine the machinability properties, the coated samples are then cut with abrasive water jet, wire erosion, laser and abrasive disc, respectively, and characterized. It was determined that the hardness of substrate increased from 110 HV to 190 HV after coating processes. In spite of the minimal heat input compared to other methods, although the abrasive water jet was prominent, the least damage was observed in the cutting with abrasive disc. It has been determined that the most suitable cutting method is the abrasive disc cutting method for laser coated samples.

___

  • [1] Vagner L. Mechaical surface treatments on titanium, aluminum and magnesium alloys, Materials Science and Engineering: A. 263 (210-216), (1999).
  • [2] Liu K, Li YJ, Wang J. In-situ reactive fabrication and effect of phosphorus on microstructure evolution of Ni/Ni-Al intermetallic composite coating by laser cladding, Materials and Design, 105 (171-178), (2016).
  • [3] Wang CL, Gao Y, Zeng ZC, Fu YK. Effect of rare-earth on friction and wear properties of laser cladding Ni-based coatings on 6063Al, Journal of Alloys and Compounds, 727 (278-285), (2017). [4] Singh A, Ramakrishnan A, Baker D, Biswas A, Dinda GP. Laser metal deposition of nickel coated Al 7050 alloy, Journal of Alloys and Compound, 719 (151-158), (2017).
  • [5] Yıldırım M, Şimşek İ, Özyürek D. Yaşlandırılmış AA7075 Alaşımında Solü syona Alma Sıcaklığ ının Aşınma Performansına Etkisinin İncelenmesi, Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 6 (233-239), (2018)
  • [6] Avcu E, Bilyalı Dö vme Parametrelerinin AA7075 T6 Alü minyum Alaşımının Yü zey Altı Ö zelliklerine Etkileri, Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 6 (741-752), (2018) [7] Sun R, Lei Y. Microstructure and hardness of laser clad SiCp–Al composite coatings on Al alloys, Materials Letters, 62 (3272–3275), (2008).
  • [8] Schuman TP (2018). Protective Coatings for Aluminum Alloys (Third Edition), Handbook of Environmental Degradation of Materials, USA, 423-448.
  • [9] Mandal P, Mondal SC. Investigation of Electro-Thermal property for Cu-MWCNT composite coating on anodized 6061 aluminium alloy, Applied Surface Science, 454 (138-147), (2018). [10] Hou GL, An YL, Zhao XQ, Zhou HD, Chen JM. Improving interfacial, mechanical and tribological properties of alumina coatings on Al alloy by plasma arc heat-treatment of substrate. Applied Surface Science, 411 (53-66), (2017). [11] Kashani H, Sohi MH, Kaypour H. Microstructural and physical properties of titanium nitride coatings produced by CVD process, Materials and Science and Engineering A, 286 (324-330), (2000). [12] Li Y, Zhang P, Bai P, Wu L, Liu B, Zhao Z. Microstructure and properties of Ti/TiBCN coating on 7075 aluminum alloy by laser cladding. Surface and Coatings Technology, 334 (142–149), (2018).
  • [13] Yiming C, Guochao G, Huijun Y, Chuanzhong C. Laser surface alloying on aluminum and its alloys: A review, Optics and Lasers in Engineering, 100 (23-37), (2018)
  • [14] Quan WX, Hong Y, Yong X. Study on Microstructure and Properties of Laser Cladding Al–Ti–C Coating on Aluminum Alloy Surface, Journal of Nanoelectronics and Optoelectronics, 13 (1258-1264), (2018)
  • [15] Toyserkani E. (2005), Laser cladding, Boca Raton: CRC press, 1-280.
  • [16] Majumdar JD, Li L. Development of titanium boride (TiB) dispersed titanium (Ti) matrix composite by direct laser cladding. Materials Letters, 64 (1010-1012), (2010).
  • [17] Tomida S, Nakata K. Fe-Al composite layers on aluminium alloy formed by laser surface alloying with iron powder. Surface and Coatings Technology, 174 (559-563), (2003).
  • [18] Man HC, Zhang S, Yue TM, Cheng FT. Laser surface alloying of NiCrSiB on Al6061 aluminium alloy. Surface and Coatings Technology, 148 (136–142), (2001) [19] Xu J, Liu W, Kan Y, M. Zhong, Microstructure and wear properties of laser cladding Ti–Al–Fe–B coatings on AA2024 aluminum alloy, Materials and Design, 27 (405–410), (2006) [20] Liang GY, Su JY. The microstructure and tribological characteristics of laser-clad Ni–Cr–Al coatings on aluminium alloy, Materials Science and Engineering A, 290 (207–2129, (2000) [21] Şimşek T. (2014). Zirkonyum Diborür Nano Kristal Kaplanmiş Farkli Malzemelerin Mekanik Ve İşlenebilirlik Özelliklerinin Araştirilmasi, Doktora Tezi, Gazi Üniversitesi Fen Bilimleri Ensititüsü, Ankara, 1-205.
  • [22] Yilbas BS, Al-Aqeeli N, Karatas C. Laser control melting of alümina surfaces with presence of B4C particles. Journal of Alloys and Compounds, 539 (12-16), (2012).
  • [23] Simsek T, Baris M, Chattopadhyay AK, Ozcan S, Akkurt A. Surface Treatment of S355JR Carbon Steel SurfacesWith ZrB2 Nanocrystals by CO2Laser, Transactions of the Indian Institute of Metals, 71 (1885-1896), (2018).
  • [24] Simsek T, Baris M, Akkurt A. Laser surface treatment of S235JRC carbon steel With Co2B nanocrystals, International Journal of Materials Research, 108 (486-494), (2017).
  • [25] Simsek T, Baris M, Ozcan S, Akkurt A. Investigation Of Machinability Propertıes Of Laser Treated S355JR Carbon Steel Wıth ZrB2 Nanoparticles, Turkish Journal of Engineering, 3 (51-59), 2019.
  • [26] Baris M, Simsek T, Akkurt A. Co2B nanopartikülleri ile Kaplanmış S235JRC karbon çelik malzemelerin farklı kesme yöntemleri ile işlenebilirlik özelliklerinin araştırılması, Politeknik Dergisi, 22 (169-177), (2019).
  • [27] Simsek T, İzciler M, Ozcan S, Akkurt A. Laser Cladding of Hot Work Tool Steel (H13) With TiC Nanoparticles, Turkish Journal of Engineering, 3 (25-31), (2019).
  • [28] Iwatani S, Ogata Y, Uenishi K, Kobayashi KF, Tsuboi A. Laser cladding of Fe-Cr-C Alloys on A5052 Aluminum Alloy Using Diode Laser, Materials Transactions, 46 (1341-1347), (2005). [29] Quyang JH, Nowotny S, Richter A, Beyer E. Laser cladding of yttria partially stabilized ZrO2 (YPSZ) ceramic coatings on aluminum alloys, Ceramics International, 27 (15-24), (2001).
  • [30] Fu Y, Batchelor AW. Laser alloying of aluminum alloy AA 6061 with NiCr. Part II. The effect of laser alloying on the fretting wear resistance, Surface and Coatings Technology, 102 (119-126), (1997).
  • [31] Yılbas BS, Akhtar SS, Karatas C. Laser carbonitriding of alümina surface, Optics and Lasers in Engineering, 49 (341-350), (2011).
  • [32] Almeida A, Anjos M, Vilar R, Li R, Ferreira MG, Steen WM, Watkins KG. Laser alloying of aluminium alloys with chromium, Surface and Coatings Technology, 70 (221-229), (1995).
  • [33] Sun R, Lei Y. Microstructure and hardness of laser clad SiCp–Al composite coatings on Al alloys, Materials Letters, 62 (3272–3275), (2008).
  • [34] Katipelli L.R, Agarwal A, Dahotre N.B, Laser surface engineered TiC coating on 6061 Al alloy: microstructure and wear, Applied Surface Science, 153 865–78), (2000).
Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Gazi Üniversitesi , Fen Bilimleri Enstitüsü