Kokil Kalıba Döküm Yöntemi ile Üretilmiş Al-12Si-(0,02-1)Sr Alaşımlarının CVD-TiCN/Al2O3/TiN Kaplamalı Kesici Uç ile Tornada İşlenmesinde Kesme Kuvveti ve Yüzey Pürüzlülüğü Üzerine Deneysel Çalışma

Bu çalışmada, farklı oranlarda (%0,02; 0,1 ve 1) stronsiyum (Sr) içeren üç adet Al-12Si-Sr alaşımı kokil kalıba döküm yöntemiyle üretildi. Üretilen alaşımların içyapıları standart metalografik yöntemlerle, sertlik ve çekme dayanımı değerleri ise sırasıyla Brinell ölçüm yöntemi ve çekme deneyi ile belirlendi. Farklı Sr oranları ve kesme parametrelerinin bu alaşımların tornada işlenmesi esnasındaki kesme kuvveti ve yüzey pürüzlülüğü üzerindeki etkileri, farklı kesme hızı (200, 300 ve 400 m/dak), ilerleme (0,05; 0,1 ve 0,15 mm/dev) ve sabit kesme derinliği (1,5 mm) koşullarında CVD-TiCN/Al2O3/TiN kaplamalı karbür kesici uç kullanılarak araştırılmıştır. Metalografik incelemeler, Al-12Si-0,02Sr alaşımının içyapısının α, ötektik alüminyumsilisyum, Al-Fe-Si (δ) fazları ile primer silisyum parçacıklarından, Al-12Si-0,1Sr alaşımının içyapısının ise Al-12Si-0,02Sr alaşımında gözlenen fazlara ilave olarak Al-Sr-Si fazından oluştuğunu göstermiştir. Bu incelemelerde ayrıca Sr oranı arttıkça Al-Sr-Si fazının büyüdüğü ve/veya bu faz parçacıklarının sayısının arttığı gözlenmiştir. Üretilen alaşımlar içerisinde en yüksek sertlik ve çekme dayanımı değeri Al-12Si-0,1Sr alaşımından elde edilmiştir. Alaşımların kopma uzaması değeri ise artan Sr oranı ile sürekli azalmıştır. İşleme testlerinde kesme hızının artması ile kesme kuvveti ve yüzey pürüzlülüğünün azaldığı, ilerlemenin artması durumunda ise bu değerlerin de arttığı tespit edilmiştir. Tornalama testlerinde en düşük kesme kuvveti ve yüzey pürüzlülüğü değerleri, Al-12Si-0,1Sr alaşımının işlenmesinde ölçülürken, en yüksek değerler ise Al12Si-0,02Sr alaşımında ölçülmüştür. Alaşımların tornalanması esnasında yığıntı talaş (YT) oluşumu gözlenmiştir. YT oluşumunun yüksek kesme hızı ve düşük ilerleme kombinasyonları kullanılarak azaltılabileceği ortaya konulmuştur. Kesici uçta en az YT oluşumu, Al-12Si-0,1Sr alaşımında gözlenirken, en fazla YT oluşumu ise Al-12Si-0,02Sr alaşımında gözlenmiştir. İşleme deneylerinden elde edilen bulgular, alaşımların yapısal ve mekanik özelliklerine dayandırılarak irdelenmiştir.

Experimental Study on Cutting Force and Surface Roughness in Turning with CVD-TiCN/Al2O3/TiN Coated Cutting Insert of Al-12Si-(0.02-1)Sr Alloys Manufactured by Permanent Mold Casting Method

In this study, three Al-12Si-Sr alloys containing different ratios (0.02; 0.1 and 1%) strontium (Sr) were manufactured by the permanent mold casting method. The microstructures of the manufactured alloys were determined by standard metallographic methods, and the hardness and tensile strength values were stated by the Brinell method and tensile test, respectively. The effects of different Sr ratios and cutting parameters on the cutting force and surface roughness during turning of these alloys were investigated using CVDTiCN/Al2O3/TiN coated carbide inserts under the different cutting speeds (200, 300 and 400 m/min), feed rate (0.05; 0.1 and 0.15 mm/rev) and constant depth of cut (1.5 mm) conditions. Metallographic examinations revealed that the microstructure of the Al-12Si-0.02Sr alloy consists of α, eutectic aluminum-silicon, Al-FeSi (δ) phases and primary silicon particles, while the Al-12Si-0.1Sr contains Al-Sr-Si phase in addition to the phases observed in the Al-12Si-0.02Sr alloy. In these investigations, it was also observed that as the Sr ratio increased, the Al-Sr-Si phase grew and/or the number of these phase particles increased. The highest hardness and tensile strength values were obtained from Al-12Si-0.1Sr alloy among the produced alloys. The elongation to fracture value of the alloys decreased continuously with increasing of Sr ratio. It was seen that the cutting force and surface roughness decreased with the increase of cutting speed, whereas increased with the increase of feed rate in the machining tests. The lowest cutting force and surface roughness values were measured in the machining of Al-12Si-0.1Sr alloy, while the highest values were measured in Al-12Si-0.02Sr alloy in turning tests. Built-up edge (BUE) formation was observed during the turning of the alloys. It was revealed that BUE formation could be reduced by using a combination of high cutting speed and low feed rate. While the least BUE formation was observed in the Al-12Si-0.1Sr alloy at the cutting tool rake face, the highest BUE formation was observed in the Al-12Si-0.02Sr alloy. The findings obtained from the turning tests were discussed in based on the structural and mechanical properties of the alloys.

___

  • [1] Dos Santos GR, Da Costa DD, Amorim FL, Torres RD. Characterization of DLC Thin Film and Evaluation of Machining Forces Using Coated Inserts in Turning of Al–Si Alloys. Surface and Coatings Technology, 202 (1029-1033), (2007).
  • [2] Konca E, Cheng, YT, Weiner AM, Dasch JM, Alpas AT. Elevated Temperature Tribological Behavior of Non-Hydrogenated Diamond-Like Carbon Coatings Against 319 Aluminum Alloy. Surface and Coatings Technology, 200 (3996-4005), (2006).
  • [3] Miller WS, Zhuang L, Bottema J, Wittebrood A, De Smet P, Haszler A, Vieregge AJMS. Recent Development in Aluminium Alloys for the Automotive Industry. Materials Science and Engineering: A, 280 (37-49), (2000).
  • [4] Bhowmick S, Banerji A, Alpas AT. Tribological Behavior of Al–6.5%,–12%,–18.5% Si Alloys During Machining Using CVD Diamond and DLC Coated Tools. Surface and Coatings Technology, 284 (353-364), (2015).
  • [5] Kuczmaszewski J, Pieśko P, Zawada-Michałowska M. Carbide Milling Cutter Blades Durability During Machining of Al-Si Casting Alloy. Multidisciplinary Aspects of Production Engineering, 1(169-175), (2018).
  • [6] Barooah RK, Arif AFM, Paiva JM, Oomen-Hurst S, Veldhuis SC. Wear of Form Taps in Threading of Al-Si Alloy Parts: Mechanisms And Measurements. Wear, 442 (203153), (2020).
  • [7] Bayraktar Ş, Demir O. Processing of T6 Heat-treated Al-12Si-0.6 Mg Alloy. Materials and Manufacturing Processes, 35(354-362), (2020).
  • [8] Bayraktar Ş, Afyon F. Machinability Properties of Al–7Si, Al–7Si–4Zn and Al–7Si–4Zn–3Cu Alloys. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42(1-12), (2020).
  • [9] Steininger A, Siller A, Bleicher F. Investigations Regarding Process Stability Aspects in Thread Tapping Al-Si Alloys. Procedia Engineering, 100 (1124-1132), (2015).
  • [10] Wain N, Thomas NR, Hickman S, Wallbank J, Teer DG. Performance of Low-Friction Coatings in the Dry Drilling of Automotive Al–Si Alloys. Surface and Coatings Technology, 200(1885-1892), (2005).
  • [11] Marani M, Zeinali M, Farahany S, Mechefske CK. Neuro-Fuzzy Based Predictive Model for Cutting Force in CNC Turning Process of Al–Si–Cu Cast Alloy Using Modifier Elements. SN Applied Sciences, 3(1-11), (2021).
  • [12] Kumaran D, Paramasivam SSSS, Natarajan H. Optimization of High Speed Machining Cutting Parameters for End Milling of AlSi7Cu4 Using Taguchi Based Technique of Order Preference Similarity to the Ideal Solution. Materials Today: Proceedings, 47 (6799-6804), (2021).
  • [13] Hekimoglu AP, Çalış M, Ayata G. Effect of Strontium and Magnesium Additions on the Microstructure and Mechanical Properties of Al-12Si Alloys. Metals and Materials International, 25(1488-1499), 2019.
  • [14] Hekimoglu AP, Ayata G. Effect of Strontium and Strontium-Magnesium Additions on The Microstructure and Mechanical Properties of Hypereutectic Al-17Si Alloy. Pamukkale University Journal of Engineering Sciences, 25(49-55), (2019).
  • [15] Hekimoğlu AP, Çalış M, Ayata G. Stronsiyum ve Stronsiyum Magnezyum Katkılarının Al-9Si Alaşımının Yapısal ve Mekanik Özelliklerine Etkisi. 1st International Symposium on Innovative Approaches in Scientific Studies, Antalya, Türkiye, (pp.422-426), (11- 13 Nisan 2018).
  • [16] Bayraktar Ş, Hekimoğlu AP, Çalış M. Al-12Si-0,1Sr Alaşımının Sermet Kesiciler ile Tornalanmasında Kesme Hızı ve İlerlemenin Kesme Kuvveti ve Yüzey Pürüzlülüğüne Etkisi. 4nd International Conference on Material Science and Technology in Kızılcahamam (IMSTEC’19), Ankara, Türkiye, (pp.539-544), (18- 20 Ekim 2019).
  • [17] Hekimoğlu AP, Bayraktar Ş. Effect of Strontium Additives on Cutting Force and Surface Roughness in Machining of Al-12Si Alloy Using CVD-TiCN+TiN Coated Insert. 9th International Advanced Technologies Sysposium, Turkey, (27-28 October 2021).
  • [18] Jiang W, Xu X, Zhao Y, Wang Z, Wu C, Pan D, Meng Z. Effect of the Addition of Sr Modifier in Different Conditions on Microstructure and Mechanical Properties of T6 Treated Al-Mg2Si in-Situ Composite. Materials Science and Engineering: A, 721(263–273), (2018).
  • [19] Tahta M, Emamy M, Cao X, Campbell J. In Materials Science Research Trends. Nova Science Publishers Inc: New York, (251), (2008).
  • [20] Srirangam P, Chattopadhyay S, Bhattacharya A, S Nag, Kaduk J, Shankar S, Banerjee R, Shibata T. Probing the Local Atomic Structure of Sr-modified Al–Si alloys. Acta Materialia, 65 (185–193), (2014).
  • [21] Haro-Rodríguez S, Goytia-Reyes RE, Dwivedi DK, Baltazar-Hernández VH, Flores-Zúñiga H, Pérez-López MJ. On Influence of Ti and Sr on Microstructure, Mechanical Properties and Quality Index of Cast Eutectic Al–Si–Mg Alloy. Materials & Design, 32(1865–1871), (2011).
  • [22] Liao H, Sun Y, Sun G. Correlation Between Mechanical Properties and Amount of Dendritic Α-Al Phase in As-Cast Near-Eutectic Al–11.6% Si Alloys Modified with Strontium, Materials Science and Engineering: A, 335(62–66), (2002).
  • [23] Alipour M, Azarbarmas M, Heydari F, Hoghoughi M, Alidoost M, Emamy M. The Effect of Al–8B Grain Refiner and Heat Treatment Conditions on the Microstructure, Mechanical Properties and Dry Sliding Wear Behavior of An Al–12Zn–3Mg–2.5Cu Aluminum Alloy. Materials & Design, 38(64–73), (2012).
  • [24] Savaşkan T, Hekimoğlu AP. Microstructure and Mechanical Properties of Zn–15Al-Based Ternary and Quaternary Alloys. Materials Science and Engineering: A, 603, (52–57), (2014).
  • [25] Shabestari SG. The Effect of Iron and Manganese on the Formation of Intermetallic Compounds in Aluminum–Silicon Alloys. Materials Science and Engineering: A, 383(289–298), (2004).
  • [26] Abuhasel KA, Ibrahim MF, Elgallad EM, Samuel FH. On the Impact Toughness of Al–Si Cast Alloys. Materials & Design, 91(388–397), (2016).
  • [27] Korkut I, Boy M, Karacan I, Seker U. Investigation of Chip-Back Temperature During Machining Depending on Cutting Parameters. Materials & Design, 28 (2329-2335), (2007).
  • [28] Sharma VS, Dhiman S, Sehgal R, Sharma SK. Estimation of Cutting Forces and Surface Roughness for Hard Turning Using Neural Networks. Journal of Intelligent Manufacturing, 19 (473-483), (2008).
  • [29] Korkut I, Donertas MA. The Influence of Feed Rate and Cutting Speed on The Cutting Forces, Surface Roughness and Tool–Chip Contact Length During Face Milling. Materials & Design, 28 (308-312), (2007).
  • [30] Ali MH, Khidhir BA, Ansari MNM, Mohamed B. FEM To Predict the Effect of Feed Rate on Surface Roughness with Cutting Force During Face Milling of Titanium Alloy. HBRC Journal, 9 (263-269), (2013).
  • [31] Bayraktar Ş, Çamkerten Ç, Salihoğlu N. Bakır ve Silisyum İlavelerinin Al-25Zn Alaşımının CVD Al2O3 Kaplamalı Takımlarla Tornalanmasında İşlenebilirliğe Etkisinin İncelenmesi. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 8 (79-93), (2020).
  • [32] Özel T, Karpat Y. Predictive Modeling of Surface Roughness and Tool Wear in Hard Turning Using Regression and Neural Networks. International Journal of Machine Tools and Manufacture, 45 (467-479), (2005).
  • [33] Liao H, Sun Y, Sun G. Correlation Between Mechanical Properties and Amount of Dendritic Α-Al Phase in As-Cast Near-Eutectic Al–11.6%Si Alloys Modified with Strontium. Materials Science and Engineering: A, 335 (62–66), (2002).
  • [34] Sekmen M, Günay M, Şeker U. Alüminyum Alaşımlarının İşlenmesinde Kesme Hızı Ve Talaş Açısının Yüzey Pürüzlülüğü, Yığıntı Talaş Ve Yığıntı Katmanı Oluşumu Üzerine Etkisi. Politeknik Dergisi, 18 (141-148), (2015).
  • [35] Gökkaya H, Nalbant M. Kesme Hızının Yığıntı Katmanı ve Yığıntı Talaş Oluşumu Üzerindeki Etkilerinin SEM ile İncelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 22 (481-488), (2007).
  • [36] Ciftci I, Turker M, Seker U. Evaluation of Tool Wear When Machining Sicp-Reinforced Al-2014 Alloy Matrix Composites. Materials & Design, 25(251-255), (2004).
  • [37] Barnes S, Pashby IR, Mok DK. The Effect of Workpiece Temperature on The Machinability of An Aluminum/SiC MMC., 118 (422-427), (1996).
  • [38] Atlati S, Haddag B, Nouari M, Moufki A. Effect of The Local Friction and Contact Nature on The Built-Up Edge Formation Process in Machining Ductile Metals. Tribology International, 90 (217-227), (2015).
  • [39] Haddag B, Atlati S, Nouari M, Moufki A. Dry Machining Aeronautical Aluminum Alloy AA2024-T351: Analysis of Cutting Forces, Chip Segmentation and Built-Up Edge Formation. Metals, 6 (197), (2016).
  • [40] Acır A, Turgut Y, Übeyli M, Günay M, Şeker U. A Study on The Cutting Force in Milling of Boron Carbide Particle Reinforced Aluminium Composite. Science and Engineering of Composite Materials, 16 (187-196), (2009).
  • [41] Ezugwu EO, Lim SK. The Performance of Cermet Cutting Tools When Machining an Ni-Cr-Mo (En 24) Steel. Lubrication Engineering, 51(139-145), (1995).
  • [42] Boothroyd G, Knight WA. Fundamentals of Machining and Machine Tools. CRC Press-Taylor and Francis, (2006).
  • [43] Demir H, Gündüz S. The Effects of Aging on Machinability of 6061 Aluminium Alloy. Materials & Design, 30 (1480-1483), (2009).
  • [44] Yücel A, Yıldırım ÇV, Sarıkaya M, Şirin Ş, Kıvak T, Gupta MK, Tomaz ÍV. Influence of MoS2 Based Nanofluid-MQL on Tribological and Machining Characteristics in Turning of AA 2024 T3 Aluminum Alloy. Journal of Materials Research and Technology, 15 (1688-1704), (2021).
  • [45] Yıldırım ÇV, Sarıkaya M, Kıvak T, Şirin Ş. The Effect of Addition of hBN Nanoparticles to Nanofluid-MQL on Tool Wear Patterns, Tool Life, Roughness and Temperature in Turning of NiBased Inconel 625. Tribology International, 134 (443-456), (2019).
  • [46] Ekici E, Motorcu AR, Uzun G. An Investigation of the Effects of Cutting Parameters and Graphite Reinforcement on Quality Characteristics During the Drilling of Al/10B4C Composites. Measurement, 95 (395-404), (2017).
  • [47] Okay F, Islak S, Turgut Y. Investigation of Machinability Properties of Aluminium Matrix Hybrid Composites. Journal of Manufacturing Processes, 68 (85-94), (2021).
Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Gazi Üniversitesi , Fen Bilimleri Enstitüsü