Hibrit polimer matrisli ve cam lifi takviyeli polimer kompozitlerin çekme özelliklerinin incelenmesi

Bu çalışmada, matris fazı farklı reçine türlerinden oluşan hibrit matrisli karışımlar hazırlanmış ve bu karışımlar içerisine ağırlıkça %5, %10 ve %20 oranlarında kırpılmış E tipi cam lifleri ilave edilmiştir. Ortoftalik, izoftalik ve tereftalik polyester reçinelerinin her biri kendi aralarında ve daha sonra epoksi bazlı vinilester reçine ile farklı kombinasyonlarda ikili ve üçlü hibrit matrisli karışımlar oluşturacak şekilde karıştırılmıştır. Üretilen kompozitlerin çekme özellikleri belirlenmiştir. Çalışma sonucunda, lif oranı arttıkça, hibrit matrisli kompozitlerin daha rijit bir yapıya dönüştüğü görülmüş ve en yüksek çekme mekanik özellikleri %20 lif oranında ve vinilester reçinesinin bulunduğu karışımlarda elde edilmiştir. İki tip hibrit reçine matrisli olarak hazırlanan tüm karışımlar içerisinde ortoftalik + vinilester (OV) karışımının en yüksek rijitliğe sahip olduğu belirlenmiştir. İki tip ve üç tip hibrit reçine matrisli kompozitlerin çekme özellikleri birbirleriyle karşılaştırıldığında, anlamlı farklılıkların oluşmadığı görülmüştür.

Investigation of tensile properties of hybrid polymer matrix and glass fiber reinforced polymer composites

In this study, hybrid matrix mixtures with different matrix phase resin types were prepared and 5%, 10% and 20% chopped E type glass fibers were added to these mixtures. The orthophthalic, isophthalic and terephthalic polyester resins were each mixed with each other and epoxy-based vinyl ester resin in different combinations as double and triple hybrid matrix mixtures. The tensile properties of the composites produced were determined. As a result of the study, as the fiber ratio increased, the hybrid matrix composites were seen to turn into a more rigid structure and the highest tensile mechanical properties were obtained in the blends containing 20% fiber and vinyl ester resin. It was determined that orthophthalic + vinyl ester (OV) mixture has the highest rigidity in all mixtures prepared with two types of hybrid resin matrix. When the tensile properties of the composites with two types and three types of hybrid resin matrix were compared with each other, it was seen that there were no significant differences.

___

  • Referans1 Balasubramanian M. Composite materials and processing: Polymer matrix composites. CRC Press, 2013.
  • Referans2 Callister WD and Rethwisch JG. Materials Science and Engineering. 8th ed. John Wiley & sons, 2013.
  • Referans3 Zaske OC and Goodman SH. Unsaturated Polyester and Vinyl Ester Resins, in Handbook of Thermoset plastics, 1999.
  • Referans4 Boenig HV. Unsaturated Polyesters: Structure and Properties. Elsevier Publishing Company, 1964.
  • Referans5 Johnson KG and Yang LS. Preparation, Properties and Applications of Unsaturated Polyesters in Modern Polyesters: Chemistry and technology of polyesters and copolyesters. 697–713, 2004.
  • Referans6 Lin MS, Liu CC & Lee CT. “Toughened interpenetrating polymer network materials based on unsaturated polyester and epoxy”. Journal of Applied Polymer Science, 72(4), 585-592, 1999.
  • Referans7 Yee AF, Pearson RA. “Toughening mechanisms in elastomer-modified epoxies”. Journal of Materials Science, 21(7), 2462-2474, 1986.
  • Referans8 Yang YS, Suspene L. “Curing of unsaturated polyester resins: Viscosity studies and simulations in pre‐gel state”. Polymer Engineering & Science. 31(5), 321-332, 1991.
  • Referans9 TP O . Vinyl esters in engineered materials handbook. Eng. Plast 2: 272-275, 1988.
  • Referans10 Astrom BT. Manufacturing of polymer composites. CRC Press, 1997.
  • Referans11 Thwe MM, Liao K. “Durability of bamboo-glass fiber reinforced polymer matrix hybrid composites”. Compos Sci Technol, 63, 375–87, 2003.
  • Referans12 Fu SY, Xu G, Mai YW. “On the elastic modulus of hybrid particle/short-fiber/polymer composites”. Compos Part B Eng., 33, 291–9, 2002.
  • Referans13 Szeluga U, Kumanek B, & Trzebicka B. “Synergy in hybrid polymer/nanocarbon composites. A review”. Composites Part A: Applied Science and Manufacturing, 73, 204-231, 2015.
  • Referans14 Marom G, et al. “Hybrid effects in composites: conditions for positive or negative effects versus rule-of-mixtures behaviour,” Journal of Materials Science, 13(7), 1419–1426, 1978.
  • Referans15 Ferrante L, et all. “Behaviour of woven hybrid basalt-carbon/epoxy composites subjected to laser shock wave testing: Preliminary results”. Composites Part B: Engineering, 78, 162-173, 2015.
  • Referans16 Reddy MI, Kumar MA, & Raju CRB. “Tensile and flexural properties of Jute, Pineapple leaf and glass fiber reinforced polymer matrix hybrid composites,” Materials Today: Proceedings, 5(1), 458–462, 2018.
  • Referans17 Guermazi N, Haddar N, Elleuch K, & Ayedi HF. “Investigations on the fabrication and the characterization of glass/epoxy, carbon/epoxy and hybrid composites used in the reinforcement and the repair of aeronautic structures”. Materials & Design (1980-2015), 56, 714-724, 2014.
  • Referans18 You YJ, Park YH, Kim HY, & Park JS. “Hybrid effect on tensile properties of FRP rods with various material compositions”. Composite structures, 80(1), 117-122, 2007.
  • Referans19 Atiqah A, Maleque MA, Jawaid M, & Iqbal M. “Development of kenaf-glass reinforced unsaturated polyester hybrid composite for structural applications”. Composites Part B: Engineering, 56, 68-73, 2014.
  • Referans20 Raja RS, Manisekar K, & Manikandan V. “Study on mechanical properties of fly ash impregnated glass fiber reinforced polymer composites using mixture design analysis”. Materials & Design, 55, 499-508, 2014.
  • Referans21 International Organization for Standardization. “Plastics-Standard Atmospheres for Conditioning and Testing”. ISO 291, 2008.
  • Referans22 International Organization for Standardization. “Plastics-Determination of tensile properties- Part 1: General principles”. ISO 527-1, 2019.