Farklı Metal Çiftlerinin Mekanik Kilitlenme Yöntemi ile Birleştirilmesi

Malzemeler sökülebilen ve sökülemeyen birleştirme yöntemleri kullanılarak birleştirilirler. Ancak farklı malzeme türlerinin birleştirilmesi söz konusu olduğunda birçok birleştirme yönteminin kullanılması güç ve problemlidir. Bu nedenle farklı malzeme türlerinin birleştirilmesinde mekanik kilitleme yöntemi kullanılarak uygulamada karşılaşılan bazı problemlerin önüne geçilebilecektir. Yöntem ile seramikler ile metaller, demir esaslı malzemeler ile demir dışı metaller ve diğer malzeme türleri birbirleri ile birleştirilebilir. Bu çalışma kapsamında farklı kimyasal bileşime sahip AISI1040 ve Al 1050 metal çiftleri mekanik kilitleme ile birleştirilerek yöntemin uygulanabilirliği araştırılmıştır. Birleştirilen numunelere ait mekanik analizleri yapılmış ve mikro yapı incelemeleri tamamlanmıştır. Yapılan çalışma sonucunda farklı malzeme çiftlerinin mekanik kilitleme yöntemi ile başarılı bir şekilde birleştirileceği görülmüştür.

Joining of Dissimilar Metal Pairs by Mechanical Locking Method

The materials are assembled using assembly and disassembly methods. However, when joining dissimilar material types comes into question, it is difficult and troublesome to use many joining methods. For this reason, some problems encountered in the application can be prevented by using mechanical locking methods for joining of dissimilar material types. With the method, ceramics and metals, ferrous materials, non-ferrous metals and other material types can be joined with each other. In this study, the applicability of the method was investigated by  joining  metal  pairs  AISI  1040  and   Al 1050 with different chemical compositions via mechanical locking method. Mechanical analyses of the joined samples were carried out and microstructure studies were completed. As a result of this study, it was observed that different material pairs will be successfully joined with the mechanical locking method. 

___

  • [1] https://www.hindawi.com/journals/jma/si/425934/cfp/ Erişim tarihi 13.05.2018.
  • [2] Mercan S., Özdemir N., (2013). AISI 2205 / AISI 1020 malzeme çiftinin sürtünme kaynağı ile birleştirilmesi, NWSA-Technologıcal Applıed Scıences, 8/2, 15-34.
  • [3] Liu G.L., Yang S.W., Han W.T., Zhoua L.J., Zhang M.Q., Ding J.W., Dong Y., Wan F.R., Shang C.J., Misra R.D.K., (2018). Microstructural evolution of dissimilar welded joints between reducedactivation ferritic-martensitic steel and 316L stainless steel during the post weld heat treatment, Materials Science & Engineering A 722 182–196.
  • [4] Mercan S., (2017), 
Mekanik Kilitleme Yöntemi,
Türk 
Patent ve Marka Kurumu,
No:
 TR 2015 03256 B 
2017/05/22.
  • [5] Çöl M., Yılmaz M., (2006). Yüksek frekanslı indüksiyon kaynağından sonra X52 mikroalyajlı çeliklerin ısıl işlem parametrelerinin belirlenmesi, Malzeme ve Tasarım 27 507–512.
  • [6] Wang C., Luo T., Zhou J., Yang Y., (2018). Effects of solution and quenching treatment on the residual stress in extruded ZK60 magnesium alloy, Materials Science & Engineering A 722 14–19.
  • [7] Robinson J.S., Redington W., (2015). The influence of alloy composition on residual stresses in heat treated aluminium alloys, Mater. Charact. 105 47–55.
  • [8] Zheng L., Nie H., Zhang W., Liang W., Wang Y., (2018). Microstructural refinement and improvement of mechanical properties of hot-rolled Mg–3Al–Zn alloy sheets subjected to pre-extrusion and Al-Si alloying, Materials Science & Engineering A 722 58–68.
  • [9] Xue Y., Wang X., Wang W., Zhong X., Han F., (2018). Compressive property of Al-based auxetic lattice structures fabricated by 3-D printing combined with investment casting, Materials Science & Engineering A 722 255–262.
  • [10] Zhang K., Marthinsen K., Holmedal B., Aukrust T., Segatori A., (2018). Through thickness variations of deformation texture in round profile extrusions of 6063-type luminium alloy: Experiments, FEM and crystal plasticity modelling, Materials Science & Engineering A 722 20–29.
  • [11] https://www.google.com.tr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&cad=rja&uact=8&ved=0ahUKEwjvhZOLienYAhVDECwKHXhQBuIQFgg2MAI&url=http%3A%2F%2Fakademi.itu.edu.tr%2Fatahanh%2FDosyaGetir%2F74205%2Fch11_Termal&usg=AOvVaw1ZpBm09PFACc3O7mGql_5z/ Erişim tarihi 21.01.2018.
  • [12] Acarer M., Demir H., (2008). An investigation of mechanical and metallurgical properties of explosive welded aluminum dual phase steel. Mater Lett, 62, 4158-4160.
  • [13] Erdem M. (2015). Investigation of structure and mechanical properties of copper-brass plates joined by friction stir welding. Int J Adv Manuf Technol, 76: 1583–1592.
  • [14] Balasubramanıan M., (2015). Development of processing windows for diffusion bonding of Ti−6Al−4V titanium alloy and 304 stainless steel with silver as intermediate layer. Trans. Nonferrous Met. Soc. China , 25, 2932−2938.
  • [15] Atasoy E, Kahraman N. (2008). Diffusion bonding of commercially pure titanium to low carbon steel using a silver interlayer, Materials Characterization, 59, 1481−1490.
  • [16] Cheng X., Gao Y., FU H., Xing J., Bai B., (2010). Microstructural characterization and properties of Al/Cu/steel diffusion bonded joints, Metals and Materials International, 16:4, 649−655.
  • [17] Arık H., Semerci P., Kırmızı G., (2017). Sıcak Presleme ile Alüminyum Matrisli ve Al2O3 takviyeli toz metal kompozit malzeme üretimi ve aşınma davranışının araştırılması, GU J Sci, Part C, 5(4): 87-97 Gazi Üniversitesi Fen Bilimleri Dergisi PART C: Tasarım ve Teknoloji.
  • [18] Meriç C., Köksal N.S., M. Erdoğan T., Okur A., (2008). Sürtünme kaynağı ile birleştirilmiş farklı malzemelerin kaynak bölgesinin incelenmesi, C.B.Ü. Fen Bilimleri Dergisi, 4.2 135–144, ISSN 1305-1385.
  • [19] Saarimäki J., Lundberg M., Brodin H., Moverare J.J., (2018). Dwell-fatigue crack propagation in additive manufactured Hastelloy X, Materials Science & Engineering A 722, 30–36.