Elektrikli Araçlar İçin Hızlı Şarj İstasyonu Teknolojileri

Tüm dünyada günden güne gelişen teknoloji ve artan dünya nüfusu beraberinde enerji kaynağı sorununu doğurmaktadır. Fosil kaynaklı yakıtların doğada sınırlı miktarda rezervlerinin bulunması, yüksek maliyetleri ve çevreye verdikleri tahribatlar nedeniyle yenilenebilir enerji kaynaklarına yönelim hız kazanmıştır. Fosil kaynaklı yakıtların başlıca kullanım alanlardan biri içten yanmalı motorlara sahip araçlardır. İçten yanmalı motora sahip araçlar yerine sadece elektrik motoru kullanılan elektrikli araçlar (EA) bu fosil kaynaklı yakıt tüketimini azaltmaya yönelik yeni bir teknolojidir. Bu teknolojinin ise menzil ve batarya şarj süresi gibi bazı problemleri mevcuttur. Bu çalışmada problemlerden biri olan batarya şarj süreleri (seviye 1, seviye 2, seviye 3 ve seviye 4) üzerine araştırmalar yapılmıştır. Seviye 1 ve seviye 2 yavaş şarj yöntemlerini ifade ederken, seviye 3 ve seviye 4 hızlı şarj yöntemlerini ifade etmektedir. Hızlı şarj yöntemleri ise AA/DA/DA dönüştürücülü topoloji (alt dalları olarak araçtan şebekeye (V2G) şarj istasyonu ve tek yönlü şarj istasyonu), ortak AA bağlantılı çok noktalı topoloji ve transformatörsüz topoloji olmak üzere üç farklı topolojiden oluşmaktadır. Tüm bu topolojiler arasında yenilenebilir enerji kaynaklarına uyum sağlaması, enerjiyi verimli kullanması, kolay kurulumu ve hem AA hem DA sistemlerine uyum sağlaması açısından V2G yönteminin verimli ve etkili bir yöntem olduğu sonucuna varılmıştır.

Fast Charging Station Technologies For Electric Vehicles

Increasing world population and developing day-to-day technology are causing the energy supply crisis around the world. Owing to the limited nature reserves, high costs and destruction of fossil fuels to the ecosystem, movements towards renewable energy sources have been accelerated. It is one of the fossil fuel's main uses are vehicles that have internal combustion engines. Instead of vehicles using an internal combustion engine, electric vehicles (EV), which only use electric motors, are a new technology to reduce the consumption of fossil fuel. There are some difficulties with this new technology, such as range and battery charge time. In this study, the research on battery charging time (level 1, level 2, level 3, and level 4) was conducted which is one of the problems. Level 1 and level 2 refer to slow charging methods while level 3 and level 4 refer to fast charging methods. Fast charging methods consist of three different topologies: AC/ DC/ DC converter topology (as sub-branches of vehicle-to-grid (V2G) charging station and one-way charging station), common AC connected multi-point topology and transformerless topology. It was concluded that the V2G method which is the sub-branch of fast charging station topology of AC/ DC/ DC converter, is an effective and reliable process for adapting to renewable energy sources, using energy efficiently, easily integrated and adapting to both AC and DC systems.

___

  • [1] Sutopo, W., Nizam, M., Rahmawatie, B., & Fahma, F. (2018, October). A Review of Electric Vehicles Charging Standard Development: Study Case in Indonesia. In 2018 5th International Conference on Electric Vehicular Technology (ICEVT) (pp. 152-157). IEEE.
  • [2] Maggetto, G., & Van Mierlo, J. (2000). Electric and electric hybrid vehicle technology: a survey. Seminar Electric, Hybrid and Fuel Cell Vehicles, Durham, UK, pp. 1/1-111.
  • [3] Rnstvik, H. N. (2013, November). Norway's electric vehicle deployment success. A historical review including plans for fast charging stations covering all of the country-By 2015. In 2013 World Electric Vehicle Symposium and Exhibition (EVS27) (pp. 1-10). IEEE.
  • [4] Tu, H., Feng, H., Srdic, S., & Lukic, S. (2019). Extreme Fast Charging of Electric Vehicles: A Technology Overview. IEEE Transactions on Transportation Electrification. Ahmadi, M., Mithulananthan, N., & Sharma, R. (2016, September). A review on topologies for fast charging stations for electric vehicles. In 2016 IEEE International Conference on Power System Technology (POWERCON) (pp. 1-6). IEEE.
  • [6] Ng, T. W., Liu, J. F., & Cheng, K. W. E. (2011, June). A review of international charging coupler standards and its availability in Hong Kong. In 2011 4th International Conference on Power Electronics Systems and Applications (pp.1-4). IEEE.
  • [7] Angelov, G., Andreev, M., & Hinov, N. (2018, May). Modelling of electric vehicle charging station for DC fast charging. In 2018 41st International Spring Seminar on Electronics Technology (ISSE) (pp. 1- 5). IEEE.
  • [8] Ronanki, D., Kelkar, A., & Williamson, S. S. (2019). Extreme Fast Charging Technology—Prospects to Enhance Sustainable Electric Transportation. Energies, 12(19), 3721.
  • [9] Sahoo, J. K., & Mathew, A. T. (2017, July). Design of a ZCS full-Bridge DC-DC converter for PV based electric vehicle fast charging station. In 2017 IEEE Region 10 Symposium (TENSYMP) (pp. 1-5). IEEE. IEE
  • [10] Domínguez-Navarro, J. A., Dufo-López, R., Yusta-Loyo, J. M., Artal-Sevil, J. S., & Bernal-Agustín, J. L. (2019). Design of an electric vehicle fast-charging station with integration of renewable energy and storage systems. International Journal of Electrical Power & Energy Systems, 105, 46-58.
  • [11] Geske, M., Komarnicki, P., Stötzer, M., & Styczynski, Z. A. (2010, September). Modeling and simulation of electric car penetration in the distribution power system—Case study. In 2010 Modern Electric Power Systems (pp. 1-6). IEEE.
  • [12] Nikitha, L., Anil, L., Tripathi, A., & Nagesh, S. (2017, August). Effect of electrical vehicle charging on power quality. In 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS) (pp. 2149-2153). IEEE.
  • [13] Shaarbaf, M. R., & Ghayeni, M. (2018, May). Identification of the Best Charging Time of Electric Vehicles in Fast Charging Stations Connected to Smart Grid Based on Q-Learning. In 2018 Electrical Power Distribution Conference (EPDC) (pp. 78-83). IEEE.
  • [14] Malik, F. H., & Lehtonen, M. (2017, September). Minimization of queuing time of electric vehicles at a fast charging station. In 2017 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe) (pp. 1-6). IEEE.
  • [15] Sadeghi-Barzani, P., Rajabi-Ghahnavieh, A., & Kazemi-Karegar, H. (2014). Optimal fast charging station placing and sizing. Applied Energy, 125, 289-299.
  • [16] Victor-Gallardo, L., Angulo-Paniagua, J., Bejarano-Viachica, R., Fuentes-Soto, D., Ruiz, L., Martínez- Barboza, J., & Quirós-Tortós, J. (2019, September). Strategic Location of EV Fast Charging Stations: The Real Case of Costa Rica. In 2019 IEEE PES Innovative Smart Grid Technologies Conference-Latin America (ISGT Latin America) (pp. 1-6). IEEE.
  • [17] Ahmad, A., Khan, Z. A., Saad Alam, M., & Khateeb, S. (2018). A review of the electric vehicle charging techniques, standards, progression and evolution of EV technologies in Germany. Smart Science, 6(1), 36-53.
  • [18] Dericioglu, C., Yirik, E., Unal, E., Cuma, M. U., Onur, B., & Tumay, M. (2018). A Review of Charging Technologies For Commercial Electric Vehicles. International Journal of Advances on Automotive and Technology, 2(1), 61-70.
  • [19] Meissner, E., & Richter, G. (2003). Battery monitoring and electrical energy management: Precondition for future vehicle electric power systems. Journal of power sources, 116(1-2), 79-98.
  • [20] Paschero, M., Anniballi, L., Del Vescovo, G., Fabbri, G., & Mascioli, F. M. F. (2013, May). Design and implementation of a fast recharge station for electric vehicles. In 2013 IEEE International Symposium on Industrial Electronics (pp. 1-6). IEEE.
  • [21] Kerem, A. (2014). Elektrikli araç teknolojisinin gelişimi ve gelecek beklentileri. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 5(1), 1-13. [22] İnternet: Elektrikli Araç Şarj Modları, Erişim adresi: https://esarj.com/sarj-modlari, Son Erişim Tarihi: 12.02.2020
  • [23] Yilmaz, M., & Krein, P. T. (2012). Review of battery charger topologies, charging power levels, and infrastructure for plug-in electric and hybrid vehicles. IEEE transactions on Power Electronics, 28(5), 2151-2169.
  • [24] IEC, I. (2010). 61851-1: Electric vehicle conductive charging system-part 1: General requirements,”. IEC (International Electrotechnical Commission), Geneva, Switzerland.
  • [25] Ricaud, C., & Vollet, P. (2010). Connection method for charging systems–a key element for electric vehicles. Schneider Electric.
  • [26] Ahmad, A., Alam, M. S., & Chaban, R. C. (2017, June). Efficiency enhancement of wireless charging for electric vehicles through reduction of coil misalignment. In2017 IEEE Transportation Electrification Conference and Expo (ITEC) (pp. 21-26). IEEE.
  • [27] Lukic, S., & Pantic, Z. (2013). Cutting the cord: Static and dynamic inductive wireless charging of electric vehicles. IEEE Electrification Magazine, 1(1), 57-64.
  • [28] Karakitsios, I., Karfopoulos, E. L., & Hatziargyriou, N. (2014). Static and dynamic fast inductive charging: The FastInCharge project concept.
  • [29] Panchal, C., Stegen, S., & Lu, J. (2018). Review of static and dynamic wireless electric vehicle charging system. Engineering science and technology, an international journal, 21(5), 922-937.
  • [30] Rim, C. T., & Mi, C. (2017). Wireless power transfer for electric vehicles and mobile devices. John Wiley & Sons
  • [31] J. Young Jae, K. Young Dae, J. Seungmin, Optimal design of the wireless charging electric vehicle, in: Electric Vehicle Conference (IEVC), 2012 IEEE International, 2012, pp. 1–5.
  • [32] Niculae, D., Iordache, M., Stanculescu, M., Bobaru, M. L., & Deleanu, S. (2019, March). A Review of Electric Vehicles Charging Technologies Stationary and Dynamic. In 2019 11th International Symposium on Advanced Topics in Electrical Engineering (ATEE) (pp. 1-4). IEEE.
  • [33] Avci, B., Girotra, K., & Netessine, S. (2015). Electric vehicles with a battery switching station: Adoption and environmental impact. Management Science, 61(4), 772-794.
  • [34] Zheng, Y., Dong, Z. Y., Xu, Y., Meng, K., Zhao, J. H., & Qiu, J. (2013). Electric vehicle battery charging/swap stations in distribution systems: comparison study and optimal planning. IEEE transactions on Power Systems, 29(1), 221-229. Das, H. S., Rahman, M. M., Li, S., & Tan, C. W. (2019). Electric vehicles standards, charging infrastructure, and impact on grid integration: A technological review. Renewable and Sustainable Energy Reviews, 109618. [36] Hall, D., & Lutsey, N. (2017). Emerging best practices for electric vehicle charging infrastructure. Washington, DC: The International Council on Clean Transportation (ICCT).
  • [37] Bhattacharjee, S., Batool, S., Nandi, C., & Pakdeetrakulwong, U. Investigating Electric Vehicle (EV) Charging Station Locations for Agartala, India. [38] Hatton, C. E., Beella, S. K., Brezet, J. C., & Wijnia, Y. (2009). Charging Stations for Urban Settings the design of a product platform for electric vehicle infrastructure in Dutch cities. World Electric Vehicle Journal, 3(1), 134-146.
  • [39] Shafad, K. H., Jamian, J. J., & Nasir, S. A. S. (2016, December). Harmonic distortion mitigation for multiple modes charging station via optimum passive filter design. In 2016 IEEE Conference on Systems, Process and Control (ICSPC) (pp. 219-223). IEEE. [40] İnternet: Elektrikli araçlar. TOGG elektrikli https://togg.com.tr/content/otomobil, Son Erişim Tarihi: 27.12.2019 araç teknik özellikleri, Erişim adresi: İnternet: özellikleri, adresi:
  • [41] https://www.cdn.renault.com/content/dam/Renault/TR/global-brochures/Renault-Zoe-Zcard.pdf, Son Erişim Tarihi: 07.02.2020 Elektirikli araçlar. Renault araç teknik Erişim
  • [42] İnternet: Elektrikli araçlar. BMW http://kosifleroto.com.tr/bmw/iserisi/i3/menzilsarj, Son Erişim Tarihi: 27.01.2019 elektrikli araç teknik özellikleri, Erişim adresi:
  • [43] İnternet:Editör, Mercedes Benz EQC 400 4 Matic İncelemesi[blog], Erişim adresi: https://www.arabam.com/blog/otomobil-inceleme/mercedes-benz-eqc-400-4-matic-incelemesi/,Son Erişim Tarihi: 04.02.2020
  • [44] İnternet: Elektrikli araçlar. Nissan elektrikli https://www.nissanusa.com/vehicles/electric-cars/20-leaf/features/range-charging-battery.html, Erişim Tarihi: 27.11.2019 araç teknik özellikleri, Erişim adresi: Son
  • [45] Kirsten Korosec. (2019, 21 November). Toyota's first plug-in hybrid RAV4 piles on the power and fuel efficiency. Erişim adresi: https://techcrunch.com/2019/11/21/toyotas-first-plug-in-hybrid-rav4- bataryaes-on-the-power-and-fuel-efficiency/
  • [46] İnternet: Elektrikli araçlar. Tesla X elektrikli araç teknik özellikleri, Erişim adresi: https://www.tesla.com/modelx, Son Erişim Tarihi: 01.02.2020
  • [47] İnternet: Elektrikli araçlar. Audi-e-tron elektrikli araç teknik özellikleri https://www.audi.com.tr/tr/web/tr/modeller/tron/audi-e-tron.html,
  • [48] İnternet: Elektrikli araçlar. Jaguar ipace elektrikli araç teknik özellikleri https://www.jaguar-turkiye.com/compare?carkey1=ipace-s-400a,
  • [49] İnternet: Elektrikli araçlar. Tesla Roadster elektrikli araç teknik özellikleri, Erişim adresi: https://www.tesla.com/roadster, Son Erişim Tarihi: 20.01.2020
  • [50] İnternet: Elektrikli araçlar. Honda-e elektrikli araç teknik özellikleri, Erişim adresi: https://ev- database.org/car/1171/Honda-e, Son Erişim Tarihi: 27.01.2020
  • [51] İnternet: Elektrikli araçlar. Peugeot-e elektrikli araç teknik özellikleri, Erişim adresi: https://ev- database.org/car/1168/Peugeot-e-208#charge-table, Son Erişim Tarihi: 30.01.2020
  • [52] İnternet: Elektrikli araçlar şarj istasyonları. Ultra-e şarj istasyon projeleri, Erişim adresi: https://www.ultra-e.eu/ , Son Erişim Tarihi: 02.02.2020
  • [53] İnternet: Elektrikli araçlar şarj istasyonları. Voltrun şarj istasyon projeleri, Erişim adresi: https://www.voltrun.com/ , Son Erişim Tarihi: 15.12.2019
  • [54] İnternet: Elektrikli araçlar şarj istasyonları. İonity şarj istasyon projeleri, Erişim adresi: https://ionity.eu/ , Son Erişim Tarihi: 18.12.2019
  • [55] İnternet: Xinhua, China's State Grid to install 120,000 public EV charging piles by 2020 [blog], Erişim adresi: http://www.chinadaily.com.cn/a/201801/16/WS5a5d9072a3102c394518f8bf.html/,Son Erişim Tarihi: 16.01.2020
  • [56] İnternet: Article Jakarta, ABB supports one of the first fast charging stations in Indonesia, Erişim adresi: https://new.abb.com/news/detail/15148/abb-supports-one-of-the-first-fast-charging-stations-in- indonesia/,Son Erişim Tarihi: 24.01.2020
  • [57] İnternet: Elektrikli araçlar şarj istasyonları. Electrify america şarj istasyon projeleri, Erişim adresi: https://www.electrifyamerica.com/our-plan , Son Erişim Tarihi: 25.12.2019
  • [58] İnternet: Elektrikli araçlar şarj istasyonları. Allego şarj istasyon projeleri, Erişim adresi: https://www.allego.eu/business/high-power-charging/, S adresi: 25.11.2019 Channegowda, J., Pathipati, V. K., & Williamson, S. S. (2015, June). Comprehensive review and comparison of DC fast charging converter topologies: Improving electric vehicle plug-to-wheels efficiency. In 2015 IEEE 24th International Symposium on Industrial Electronics (ISIE) (pp. 263-268). Solanke, T. U., Ramachandaramurthy, V. K., Yong, J. Y., Pasupuleti, J., Kasinathan, P., & Rajagopalan, A. (2020). A review of strategic charging–discharging control of grid-connected electric vehicles. Journal of Energy Storage, 28, 101193.
  • [62] İnternet:V2G şarj istasyonları. Erişim adresi : https://www.cleantech.com/ev-charging-software-and- grid-services/, Son Erişim Tarihi: 11.06.2020
  • [63] Kaiser, A., Nguyen, A., Pham, R., Granados, M., & Le, H. T. (2018, June). Efficient Interfacing Electric Vehicles with Grid using Bi-directional Smart Inverter. In 2018 IEEE Transportation Electrification Conference and Expo (ITEC) (pp. 178-182). IEEE. Katić, V. A., Aleksandar, M., Dumnić, B. P., & Popadić, B. P. (2019, July). Impact of V2G operation of electric vehicle chargers on distribution grid during voltage dips. In IEEE EUROCON 2019-18th International Conference on Smart Technologies (pp. 1-6). IEEE.
  • [68] D. C. Erb, O. C. Onar, and A. Khaligh, “Bi-directional charging topologies for plug-in hybrid electric vehicles,” in Proc. IEEE Application in Power Electronics Conference, Feb. 2010.
  • [69] Prasad R., Namuduri C. and Phillip Kollmeyer, “Onboard unidirectional automotive G2V battery charger using sine charging and its effect on liion batteries”. IEEE Energy Conversion Congress and Exposition (ECCE), 2015.
  • [70] Joy, T. P., Kannan Thirugnanam, and Pranaw Kumar. "A multi-point Bidirectional Contactless Charging System in a charging station suitable for EVs and PHEVs applications." India Conference (INDICON), 2013 Annual IEEE. IEEE, 2013.
  • Zhang, J., Lai, J. S., Kim, R. Y., & Yu, W. (2007). High-power density design of a soft-switching high-power bidirectional dc–dc converter. IEEE Transactions on power electronics, 22(4), 1145-1153.
  • [66] Arancibia, A., & Strunz, K. (2012, March). Modeling of an electric vehicle charging station for fast DC charging. In 2012 IEEE International Electric Vehicle Conference (pp. 1-6). IEEE.
  • [67] Liu, C., Chau, K. T., Wu, D., & Gao, S. (2013). Opportunities and challenges of vehicle-to-home, vehicle-to-vehicle, and vehicle-to-grid technologies. Proceedings of the IEEE, 101(11), 2409-2427. Wang, S., Crosier, R., & Chu, Y. (2012, March). Investigating the power architectures and circuit topologies for megawatt superfast electric vehicle charging stations with enhanced grid support functionality. In 2012 IEEE International Electric Vehicle Conference (pp. 1-8). IEEE.
  • [72] Crosier, R., & Wang, S. (2013). DQ-frame modeling of an active power filter integrated with a grid- connected, multifunctional electric vehicle charging station.IEEE transactions on power electronics, 28(12), 5702-5716.
Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Gazi Üniversitesi , Fen Bilimleri Enstitüsü