Çeyrek Taşıt Aktif Süspansiyon Sistemi için LQR ve LQI Denetleyicilerinin Karşılaştırılması

Bu çalışma kara araçları için yol tutuşu ve yolcu konforu bakımından çok önemli bir yere sahip olan aktif süspansiyon sisteminin kontrolünü sunar. Kontrol sistemi için literatürde çeyrek taşıt modeli olarak bilinen ve aracın dörtte bir kütlesiyle tek teker sisteminden oluşan model kullanılmıştır. Öncelikle pasif ve aktif süspansiyon sistemlerinin matematiksel modelleri ortaya konulmuş ve aktif süspansiyon sistemi için kontrolörler tasarlanmıştır. Kontrolör tasarımları lineer matris eşitsizlikleri (LMI) ile optimizasyon yapılarak elde edilmiştir. Çalışmada lineer quadratik regülatör (LQR) kontrol ile lineer quadratik integral (LQI) kontrol tasarımları yapılmış ve yol bozucularına karşı performansları kıyaslanmıştır.

The Comparisons of LQR and LQI Controllers for Quarter Car Active Suspension System

This paper presents the control of the suspension system, which has a very important place in terms of road handling and passenger comfort for land vehicles. For the control system, the model consisting of a single wheel system with one-fourth mass of vehicle is used, which is known as a quarter-car model in the literature. Firstly, the mathematical models of passive and active suspension systems have been presented, and the controllers have been designed for the active suspension system. The controller designs have been obtained by optimization with linear matrix inequalities (LMI). In the study, linear quadratic regulator (LQR) control and linear quadratic integral (LQI) control have been designed, and their performances have been compared against the road disturbances.

___

  • [1] Foda, S. G., 2000, “Fuzzy control of a quarter-car suspension system,” Proceedings of the International Conference on Microelectronics, ICM, pp. 231–234. [2] Yao, G. Z., Yap, F. F., Chen, G., Li, W. H., and Yeo, S. H., 2002, “MR damper and its application for semi-active control of vehicle suspension system,” Mechatronics, 12(7), pp. 963–973. [3] Basari, A. A., and Saat, M. S. M., 2007, “Control of a quarter car nonlinear active suspension system,” 2007 Asia-Pacific Conference on Applied Electromagnetics Proceedings, APACE2007. [4] Lauwerys, C., Swevers, J., and Sas, P., 2005, “Robust linear control of an active suspension on a quarter car test-rig,” Control Engineering Practice, 13(5), pp. 577–586. [5] Sun, L., Cai, X., and Yang, J., 2007, “Genetic algorithm-based optimum vehicle suspension design using minimum dynamic pavement load as a design criterion,” Journal of Sound and Vibration, 301(1–2), pp. 18–27. [6] Poussot-Vassal, C., Sename, O., Dugard, L., Gáspár, P., Szabó, Z., and Bokor, J., 2008, “A new semi-active suspension control strategy through LPV technique,” Control Engineering Practice, 16(12), pp. 1519–1534. [7] Wang, F. C., and Chan, H. A., 2008, “Mechatronic suspension design and its applications to vehicle suspension control,” Proceedings of the IEEE Conference on Decision and Control, pp. 3769–3774. [8] Fateh, M. M., and Alavi, S. S., 2009, “Impedance control of an active suspension system,” Mechatronics, 19(1), pp. 134–140. [9] Gysen, B. L. J., Paulides, J. J. H., Janssen, J. L. G., and Lomonova, E. A., 2010, “Active electromagnetic suspension system for improved vehicle dynamics,” IEEE Transactions on Vehicular Technology, 59(3), pp. 1156–1163. [10] Shim, T., and Velusamy, P. C., 2011, “Improvement of vehicle roll stability by varying suspension properties,” Vehicle System Dynamics, 49(1–2), pp. 129–152. [11] Cao, D., Song, X., and Ahmadian, M., 2011, “Editors’ perspectives: road vehicle suspension design, dynamics, and control,” Vehicle System Dynamics, 49(1–2), pp. 3–28. [12] Zeinali, M., and Darus, I. Z. M., 2012, “Fuzzy PID controller simulation for a quarter-car semi-active suspension system using Magnetorheological damper,” 2012 IEEE Conference on Control, Systems & Industrial Informatics, pp. 104–108. [13] Alvarez-Sánchez, E., 2013, “A Quarter-Car Suspension System: Car Body Mass Estimator and Sliding Mode Control,” Procedia Technology, 7, pp. 208–214. [14] Van Der Sande, T. P. J., Gysen, B. L. J., Besselink, I. J. M., Paulides, J. J. H., Lomonova, E. A., and Nijmeijer, H., 2013, “Robust control of an electromagnetic active suspension system: Simulations and measurements,” Mechatronics, 23(2), pp. 204–212. [15] Datta, A., Bhattacharyya, S. P., and Keel, L. H., 2009, Linear Control Theory. [16] Boyd, S., El Ghaoui, L., Feron, E., and Balakrishnan, V., 1994, Linear Matrix Inequalities in System and Control Theory. [17] Labit, Y., Peaucelle, D., and Henrion, D., 2002, “SEDUMI INTERFACE 1.02: A tool for solving LMI problems with SEDUMI,” 2002 IEEE International Symposium on Computer Aided Control System Design, CACSD 2002 - Proceedings, pp. 272–277. [18] Löfberg, J., 2012, “Automatic robust convex programming,” Optimization Methods and Software, 27(1), pp. 115–129. [19] Agharkakli, A., Sabet, G. S., and Barouz, A., 2012, “Simulation and Analysis of Passive and Active Suspension System Using Quarter Car Model for Different Road Profile,” International Journal of Engineering Trends and Technology, 3(5), pp. 636–644.
Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Gazi Üniversitesi , Fen Bilimleri Enstitüsü