Soğuk Çalışma Durumunda Katalitik Konvertörün Tek Boyutlu Modellenmesi

Çevre duyarlılığı her geçen gün daha da artmaktadır. İnsanlar çevreye dost ürünler kullanmak istemektedirler. Taşıtlar ise insanların vazgeçilmez araçlarından birisi haline gelmiştir. Daha az hava kirleten taşıtların kullanılması da ülkeler tarafından zorunlu hale getirilmiştir. İçten yanmalı motorlarda en fazla hava kirletici egzoz gazı salımı motorun soğuk olarak çalıştığı sürede olmaktadır. Bu çalışmada soğuk çalışma sırasında bir katalitik konvertörün tek boyutlu model kullanılarak ticari bir yazılım ile incelenmesi yapılmıştır. Grid sayısı, grid şekil faktörü, kanal sayısı gibi parametrelerin etkileri incelenmiştir. Sonuç olarak tek boyutlu modelin literatür ile uyumlu olarak kabul edilebilir olduğu belirlenmiştir. Katalitik konvertör içindeki kanal sayısının da önemli olduğu gösterilmiştir.

One-Dimensional Modeling Of Catalytic Converter In Cold Start Conditions

Environmental awareness is increasing day by day. People want to use environmental friendly products. Vehicles have become one of the essential tools of people. The use of less polluting vehicles has also been made mandatory by countries. In internal combustion engines, the highest level of air pollutant exhaust gas emissions occur while the engine is running in cold start conditions. In this study, a catalytic converter was examined with a commercial software using a one-dimensional model during cold start. The effects of parameters such as grid number, grid shape factor, number of channels are examined. As a result, it has been determined that the onedimensional model can be accepted in accordance with the literature. It has also been shown that the number of channels in the catalytic converter are important

___

  • [1] Ganesan V. Internal Combustion Engines, McGraw-Hill Inc., New York, USA, 1996.
  • [2] Heywood J.B. Internal Combustion Engine Fundamentals, McGraw-Hill, New York, USA, 1988.
  • [3] Kutlar O.A, Ergeneman M., Arslan H, Mutlu M. Taşıt Egzozundan Kaynaklanan Kirleticiler, Birsen Yayınevi, İstanbul, 1988.
  • [4] Chevron Inc. Motor Gasolines Technical Review (FTR-1), Chevron Products Company, Chevron USA Inc., USA, 1996.
  • [5] Pulkrabek W.W. Engineering Fundamentals of The Internal Combustion Engine, Prentice Hall, New Jersey, USA, 1997.
  • [6] Mladenov N, Koop J, Tischer S, Deutschmann O. Modeling of Transport and Chemistry in Channel Flows of Automotive Catalytic Converters, Chemical Engineering Science, 2010, Vol. 65, pp. 812–826.
  • [7] Kumar P, Makki I, Kerns J, Grigoriadis K, Franchek M, Balakotaiah V. A Low-Dimensional Model for Describing the Oxygen Storage capacity and Transient Behavior of a Three-Way Catalytic Converter”, Chemical Engineering Science, 2012, Vol. 73, pp. 373–387.
  • [8] Kumar A, Mazumder S. Toward Simulation of Full-Scale Monolithic Catalytic Converters with Complex Heterogeneous Chemistry”, Computers and Chemical Engineering, 2010, Vol. 34, pp. 135-145.
  • [9] Nien T, Mmbaga J.P, Hayes R.E, Votsmeier M. Hierarchical Multi-Scale Model Reduction in the Simulation of Catalytic Converters, Chemical Engineering Science, 2013, Vol. 93, pp. 362–375.
  • [10] Tsinoglou D.N, Koltsakis G.C, Missirlis D.K, Yakinthos K.J. Transient Modelling of Flow Distribution in Automotive Catalytic Converters, Applied Mathematical Modelling, 2004, Vol. 28, pp. 775–794.
  • [11] Holder R, Bollig M, Anderson D.R, Hochmuth J.K. A Discussion on Transport Phenomena and Three-Way Kinetics of Monolithic Converters, Chemical Engineering Science, 2006, Vol. 61, pp. 8010-8027.
  • [12] Mianzarasvand F, Shirneshan A, Afrand M. Effect of electrically heated catalytic converter on emission characteristic of a motorcycle engine in cold-start conditions: CFD simulation and kinetic study, Applied Thermal Engineering, 2017, vol. 127, pp 453-464.