Sandviç Uzun Dikdörtgen Plakların Statik Çökmelerinin Analizi

Bu çalışmada düzgün yayılı yanal yük etkisindeki sandviç uzun dikdörtgen plakların statik çökmeleri incelenmiştir. Yüzey malzemesi olarak farklı sıralanmış simetrik katmanlı kuazi-izotropik (yarı izotropik) karbon/epoksi malzeme ve öz (çekirdek) malzemesi için ise balsa ağacı seçilmiştir. Plak kenarlarının ankastre ve basit mesnetlenmiş halleri incelenmiştir. Öz malzemesinin ve dış cidarların kalınlığına, dış cidarların farklı katman dizilimine ve sınır koşullarına sahip sandviç plakların maksimum çökmeleri, uzun plak yaklaşımıyla incelenmiştir. Sonuçlar, Sonlu Elemanlar Yöntemi (SEY) temelli nümerik çalışmayla karşılaştırılmış ve birbirini sağlamıştır. Aynı ağırlığa sahip sandviç plakların maksimum çökmeleri araştırılmış, öz malzemesinin ince dış cidarların kalın olduğu durumda maksimum çökmeler daha fazla bulunmuştur.

Static Deflections Analysis of Long Rectangular Sandwich Plates

In this study, static deflections of laterally loaded long rectangular sandwich plates were investigated. Symmetrically laminated quasi-isotropic carbon/epoxy plates were used for the face sheets (skins) and balsa wood for the core. Boundary conditions were considered as simply supported and clamped. Maximum deflections were obtained for the parameters such as thicknesses of core material and face sheets, lamination sequences of face sheets and boundary conditions in long plate approximation. Results were compared with those of numerical study based on Finite Element Method and found in good agreement. Maximum deflections of sandwich plates in same weight were investigated too and found larger at the thin core and thick face sheets condition.

___

  • [1] Sezgin FA. 2008. Mechanical behavior and modelling of honeycomb cored laminated fiber/polymer sandwich structures. MSc thesis, İzmir Institute of Technology, İzmir.
  • [2] Borrega M. and Gibson L.J. 2015. Mechanics of balsa (Ochroma pyramidale) wood. Mechanics of Material. 84, 75-90.
  • [3] ASM Handbook Volume 21 Composites, 2001, ASM International Handbook Committee.
  • [4] Noor A.K., Burton W.S. and Bert C.W. 1996. Computational models for sandwich panels and shells. Appl Mech Rev vol 49, no 3, March 1996.
  • [5] Kreja I. 2011. A literature review on computational models for laminated composite and sandwich panels, Cent. Eur. J. Eng. 1(1) 59-80.
  • [6] Kant T and Swaminathan K. 2002. Analytical solutions for the static analysis of laminated composite and sandwich plates based on a higher order refined theory, - Composite Structures, Volume 56, Issue 4, June 2002, Pages 329-344.
  • [7] Kumar A.A. 2018. Ultimate Strength Analysis of Laminated Composite Sandwich Plates, Structures, Volume 14, June 2018, Pages 95-110.
  • [8] Lin G., Zhang P., Liu J. and Li J. 2018. Analysis of laminated composite and sandwich plates based on the scaled boundary finite element method, Composite Structures, Volume 187, 1 March, Pages 579-592.
  • [9] Kollar LP and Springer GS. 2007. Mechanics of composite structures. Cambridge University Press, USA.
  • [10] Matlab.
  • [11] Abaqus /CAE 6.9-2 Student Edition.
  • [12] Tsai SW. 1988. Composites design, 4th Edition, Think Composites, Dayton, OH.
  • [13] Newaz G., Mayeed M. and Rasul A. 2016. Characterization of balsa wood mechanical properties required for continuum damage mechanics analysis. J. of Materials: Design and Applications, 230(1), 206-218.
  • [14] Pilkey WD. 2005. Formulas for stress, strain and structural matrices, John Wiley & Sons, Inc., USA.