Matkap Geometrisinin Takım Aşınması ve Talaş Oluşumu Üzerine Etkisinin Araştırılması

Bu çalışmada, farklı matkap geometrileri ve kesme parametrelerinin takım aşınması ve talaş oluşum formlarına etkisi incelenmiştir. Farklı geometrilere sahip takımlar ve farklı kesme parametreleri ile 16 farklı kombinasyon için 100 deney tekrarı yapılarak hangi parametrenin takım aşınması ve talaş oluşum formuna etki ettiği gözlemlenmiştir. Deneysel çalışmalarda endüstride yaygın olarak kullanılan iki takım geometrisi ile bu çalışma kapsamında geliştirilen özgün iki matkap geometrisi kullanılmıştır. Matkaplar, 10mm çapında, iki ağızlı, helisel ve yekpare sementit karbür özelliklerindedir. İş parçası olarak, GGG50 küresel grafitli dökme demir malzeme seçilmiştir. Deney deseni için matkabın geometrik formu, kesme hızı ve ilerleme miktarı olmak üzere dörder seviyeli üç farklı kontrol faktörü ile bir Taguchi Deney Tasarımı oluşturulmuştur. Deney sonuçları değerlendirildiğinde, bütün takımlarda radyal ağız aşınması ve dış köşe aşınması gözlemlenirken, ilerlemenin artmasıyla genellikle radyal ağız aşınmasının da arttığı görülmüştür.

Investigation of the Effect of Drill Geometry on Tool Wear and Chip Formation

In this study, the effects of different drill geometries and cutting parameters on tool wear and chip formation forms are evaluated. It has been observed what parameters affect tool wear and chip formation form by making 100 test revolutions for 16 different combinations with different geometry sets and different cutting condition combinations. Experimental studies have used four different geometries, 10mm diameter, two-spindle, helical, solid cementite carbide drill with original two-channel geometry developed with the common two-tool geometry commercially available and GGG 50 spherical graphite cast iron material as workpiece material. For experiment design, a Taguchi Test Design was created with three different control factors of four levels, geometric form of cutter, cutting speed and feed amount. When evaluating the test results, radial wear and outer wear are observed in all tools, but radial wear is generally increased with progressive increase.

___

  • [1] Kaynak Y. Matkap ile Delik Delme Esnasında Kesme Parametrelerinin Kesme Kuvveti ve Sıcaklığın Değişimine Etkisinin Deneysel Olarak İncelenmesi. Yüksek Lisans Tezi. Marmara Üniversitesi, Fen Bilimleri Enstitüsü, 2006, İstanbul.
  • [2] Baytok E, Tuna B, Toprak A, Özlü E, Budak E. Freze ve Delik Delme İşlemlerinde Kullanılan Karbür Takımların Sistematik Olarak Performans Karşılaştırması. 4. Ulusal Talaşlı İmalat Sempozyumu. Kuşadası Türkiye, 2013, 100-120.
  • [3] Fujii S., Devries M.F., Wu S.M. An Analysis of Drill Geometry for Optimum Drill Design by Computer. Journal Of Engineering for Industry, 1970, 01: 70-75.
  • [4] Fujii S., Devries M.F., Wu S.M. Analysis of the Chisel Edge and the Effect of the d-Theta Relationship on Drill Point Geometry. Journal Of Engineering For Industry, 1971, 93: 1093-1105.
  • [5] Tsai W.D., Wu S.M. A Mathematical Model for Drill Point Design and Grinding. Journal of Engineering for Industry, 1979, 101: 333-340.
  • [6] Tsai W.D., Wu S.M. Computer Analysis of Drill Point Geometry. International Journal of Machine Tools and Manufacture, 1979, 19: 95-108.
  • [7] Chen W.C., Fuh K.H., Wu C.F., Chang B.R. Design optimization of a split-point drill by force analysis. Journal of Materials Processing Technology, 1996, 01: 314-322.
  • [8] Ren K., Ni J. Analyses of Drill Flute and Cutting Angles. The International Journal of Advanced Manufacturing Technology, 1999, 15: 546-553.
  • [9] Hsieh J.F., Lin P.D. Mathematical model of multiflute drill point. International Journal of Machine Tools & Manufacture, 2002, 01: 1181–1193.
  • [10] Hocheng H., Tsao C.C. Comprehensive analysis of delamination in drilling of composite materials with various drill bits. Journal of Materials Processing Technology, 2003, 01: 335–339.
  • [11] Degenhardt J.A., DeVor R.E., Kapoor S.G. Generalized groove-type chip breaker effects on drilling for different drill diameters and flute shapes. International Journal of Machine Tools and Manufacture, 2005, 45: 1588-1597.
  • [12] Hsieh J.F. Mathematical model for helical drill point. International Journal of Machine Tools and Manufacture, 2005, 45: 967-977.
  • [13] Jung J., Mayor R., Ni J. Development of freeform grinding methods for complex drill flank surfaces and cutting edge contours. International Journal of Machine Tools and Manufacture, 2005, 45: 93-103.
  • [14] Paul A., Kapoor S.G., DeVor R.E. Chisel edge and cutting lip shape optimization for improved twist drill point design. International Journal of Machine Tools and Manufacture, 2005, 45: 421-431.
  • [15] Pirtini M., Lazoglu, I. Forces and hole quality in drilling. International Journal of Machine Tools and Manufacture, 2005, 45:1271-1281.
  • [16] Hocheng H., Tsao, C.C. Effects of special drill bits on drilling-induced delamination of composite materials. International Journal of Machine Tools and Manufacture, 2006, 46:1403-1416.
  • [17] Vijayaraghavan A. Automated Drill Design Software. Laboratory for Manufacturing and Sustainability, 2006 01: 01-10.
  • [18] Vijayaraghavan A., Dornfeld D. Automated Drill Modeling for Drilling Process Simulation. Laboratory for Manufacturing and Sustainability, 2006 01: 10-15.
  • [19] Audy J. A study of computer-assisted analysis of effects of drill geometry and surface coating on forces and power in drilling. Journal of Materials Processing Technology, 2008, 204:130-138.
  • [20] Tsao C.C. Investigation into the effects of drilling parameters on delamination by various step-core drills. Journal of Materials Processing Technology, 2008, 206: 405-411.
  • [21] Wang J., Zhng Q. .A study of high-performance plane rake faced twist drills. International Journal of Machine Tools and Manufacture, 2008, 48:1276-1285.
  • [22] Abele E., Fujara M. Simulation-based twist drill design and geometry optimization. CIRP Annals - Manufacturing Technology, 2010, 59:145-150.
  • [23] Sambhav K., Dhande S.G., Tandon P. CAD Based Mechanistic Modeling of Forces for Generic Drill Point Geometry. Computer-Aided Design & Applications, 2010, 01: 809-819.
  • [24] Ema S. Effects of Twist Drill Point Geometry on Torque and Thrust. Faculty of Education, Gifu University, 2012, Japan.
  • [25] Turgut Y., Çinici H., Şahin i., Fındık T. Study of cutting force and surface roughness in milling of Al/Sic Metal Matrix Composites. Scientific Research and Essay, 2011, 6: 2056-2062.
  • [26] Güneş E.D., Toprak Ç., Çetin G., Gül F.M. GGG50 Malzemenin Abrasif Aşınma Davranışına Borlamanın Etkisi. 2011, Elazığ.
  • [27] Kılınç B. GGG50 Sınıfı Dökme Demire Bakır İlavesinin Mekanik Özelliklere Etkisi. İstanbul Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 2009, İstanbul.
  • [28] Lazar M.B. Cutting Force Modelling For Drilling Of Fiber-Reinforced Composites. Pour L'obtention Du Grade De Docteur Ès Sciences, À La Faculté Des Sciences Et Techniques De L'ingénieur, École Polytechnıque Fédérale De Lausanne, 2012, Swiss.
  • [29] Çakır A. Al7075 ve Al6013 Alüminyum Malzemelerin Delme Operasyonlari Esnasindaki Kesme Parametrelerinin İncelenmesi. Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 2009, Ankara.
  • [30] Çakır M.C., Oran A., Türker Y.E. Sert Malzemelerin Delinmesi İşleminde Kaplama Tiplerinin ve İşleme Parametrelerinin Delme İşlemine Etkilerinin İncelenmesi. 4. Ulusal Talaşlı İmalat Sempozyumu, 2013, Kuşadası.
  • [31] Usta M. Tornalama Takım Tezgahlarında Delik Delme Operasyonları Sırasında Ortaya Çıkan Kesme Kuvvetleri ve Isı Etkisinin Araştırılması. Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 2010, Ankara.