Difüzyonlu Absorbsiyonlu Mini Soğutucularda Nanoakışkan Kullanımının Ekserji Performansına Etkisi

Bu çalışmada, nano boyutta alumina (Al2O3) partikülleri içeren amonyak/su çalışma akışkanı kullanılarak Difüzyonlu Absorbsiyonlu Soğutma Sisteminin (DASS) enerji ve ekserji analizleri yapılmıştır. Nanopartiküllerin sahip olduğu büyük yüzey alanlarından dolayı akışkanın yüzey alanı ve ısıl kapasitesi arttığı için ısı transferinin gerçekleştiği komponentlerdeki ısı geçişi hızlanarak sistemin soğutma sıcaklığına düşüşü hızlanır. Yapılan deneyler, nanopartikül içeren sistemin, jeneratörde daha iyi ısı absorbsiyonu sağladığını ve soğutucunun, soğurucu akışkan içerisinden daha hızlı bir  şekilde buharlaştığını göstermiştir.    Çalışma akışkan çiftine alumina nanopartüküllerinin eklenmesi sistemin ısıl performans katsayısını ve ekserjetik performans katsayısını sırasıyla %55.56 ve %22.8 oranlarında arttırmış, dolaşım oranını (f) ise %51.72 oranında azaltmıştır. En yüksek ekserji kaybı jeneratörde gerçekleşmiştir.

The Effect of The Usage of Nanofluid on Exergy Performance of Diffusion Absorption Mini Refrigeration

In this study, the effects of the passive heat transfer improvement method of coupling ammonia/water with nano‐size alumina (Al2O3) particles were examined in regard to the heat performance of a diffusion absorption refrigeration system (DARS). Adding nanoparticles into the fluid leads to significant improvement in heat transfer since the surface area and heat capacity of the fluid increase due to the high surface area of the nanoparticles. In this study, cooling/absorbent fluid mixtures with Al2O3 nanoparticles and their impact on system energy and exergy performance were assessed. The results of experiments indicated that the system with nanoparticles provided better absorption of heat from the generator and faster evaporation of the cooler from the cooling/absorption fluid. Addition of alumina nanoparticles to DARS improved the system’s coefficient of performance (COP) and exergetic coefficient of performance (ECOP) by 55.56% and 22.8%, respectively, and reduced the circulation ratio (f) by 51.72%. It was found that the highest exergy destruction was in the DARS generator.