Weak Semilocal Convergence Conditions for a Two-Step Newton Method in Banach Space

Weak Semilocal Convergence Conditions for a Two-Step Newton Method in Banach Space

We present new sufficient convergence conditions for a two step Newton method (TSNM) to solve nonlinear equations in a Banach space setting. The new conditions depend on the center-Lipschitz constant instead of the Lipschitz constant. This way the applicability of (TSNM) is expanded in cases not covered before. Numerical examples are also provided in this study.

___

  • [1] S. Amat, S. Busquier, M. Negra, Adaptive approximation of nonlinear operators, Numer. Funct. Anal. Optim., 25 (2004), 397-405.
  • [2] I. K. Argyros, A unifying local-semilocal convergence analysis and applications for two-point Newton-like methods in Banach space, J. Math. Anal. Appl., 298 (2004), 374-397.
  • [3] I. K. Argyros, On the Newton-Kantorovich hypothesis for solving equations, J. Comput. Appl. Math., 169 (2004), 315-332.
  • [4] I. K. Argyros, Concerning the ”terra incognita” between convergence regions of two Newton methods, Nonlinear Anal., 62 (2005), 179-194.
  • [5] I. K. Argyros, Convergence and Application of Newton-type Iterations, Springer, 2008.
  • [6] I. K. Argyros, Approximating solutions of equations using Newton’s method with a modified Newton’s method iterate as a starting point, Rev. Anal. Numer. Theor. Approx., 36 (2007), 123-138.
  • [7] I. K. Argyros, Computational Theory of Iterative Methods. Series: Studies in Computational Mathematics, C.K. Chui, L. Wuytack (editors), Elsevier Publ. Co., New York, U.S.A, 2007.
  • [8] I. K. Argyros, On a class of Newton-like methods for solving nonlinear equations, J. Comput. Appl. Math., 228 (2009), 115-122.
  • [9] I. K. Argyros, A Semilocal convergence for directional Newton methods, Math. Comput., 80 (2011), 327-343.
  • [10] I. K. Argyros, S. Hilout, Efficient Methods for Solving Equations and Variational Inequalities, Polimetrica Publisher, Milano, Italy, 2009.
  • [11] I. K. Argyros, S. Hilout, Enclosing roots of polynomial equations and their applications to iterative processes, Surveys Math. Appl., 4 (2009), 119-132.
  • [12] I. K. Argyros, S. Hilout, Extending the Newton-Kantorovich hypothesis for solving equations, J.Comput. Appl. Math., 234 (2010), 2993-3006.
  • [13] I. K. Argyros, S. Hilout, M. A. Tabatabai, Mathematical Modelling with Applications in Biosciences and Engineering, Nova Publishers, New York, 2011.
  • [14] I. K. Argyros, Y. J. Cho, S.Hilout, Numerical Methods for Equations and Its Applications, CRC Press, Taylor and Francis, New York, 2012.
  • [15] W. Bi, Q. Wu, H. Ren, Convergence ball and error analysis of Ostrowski-Traub’s method, Appl. Math. J. Chinese Univ. Ser. B 25 (2010), 374-378.
  • [16] E. Catinas, The inexact perturbed, and quasi-Newton methods are equivalent models, Math.Comp., 74 (249) (2005), 291-301.
  • [17] X. Chen, T. Yamamoto, Convergence domains of certain iterative methods for solving nonlinear equations, Numer. Funct. Anal. Optim., 10 (1989), 37-48.
  • [18] P. Deuflhard, Newton methods for nonlinear problems, Affine invariance and adaptive algorithms, Springer Series in Computational Mathematics, 35, Springer-Verlag, Berlin, 2004.
  • [19] J. A. Ezquerro, J. M. Gutierrez, M.A. Hernandez, N. Romero, M.J. Rubio, The Newton method: from Newton to Kantorovich, (Spanish), Gac. R. Soc. Mat. Esp., 13 (1) (2010), 53-76.
  • [20] J. A. Ezquerro, M. A. Hernandez, On the R-order of convergence of Newton’s method under mild differentiability conditions, J. Comput. Appl. Math., 197(1) (2006), 53-61.
  • [21] J. A. Ezquerro, M. A. Hernandez, An improvement of the region of accessibility of Chebyshev’s method from Newton’s method, Math. Comp., 78 (267) (2009), 1613-1627.
  • [22] J. A. Ezquerro, M. A. Hernandez, N.Romero, Newton-type method of high order and domain of semilocal and blobal convergence, Appl. Math. Comput. 214(1) (2009), 142-154.
  • [23] W. B. Gragg, R. A. Tapia, Optimal error bounds for the Newton-Katorovich theorem, SIAM J. Numer. Anal., 11 (1974), 10-13.
  • [24] M. A. Hern´andez, A modification of the classical Kantorovich conditions for Newton’s method, J. Comp. Appl. Math., 137 (2001), 201-205.
  • [25] I. K. Argyros, S. Hilout Weaker conditions for the convergence of Newton’s method, J. complexity, 28 (2012), 364-387.
  • [26] L. V. Kantorovich, G.P. Akilov, Functional Analysis, Pergamon Press, Oxford, 1982.
  • [27] S. Krishnan, D. Manocha, An efficient surface intersection algorithm based on lower dimensional formulation, ACM Trans. Graph., 16 (1) (1997), 74-106.
  • [28] G. Lukcs, The generalized inverse matrix and the surface-surface intersection problem. Theory and practice of geometric modeling, (Blaubeuren, 1988), 167-185, Springer, Berlin, 1989.
  • [29] L. M. Ortega, W.C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, Academic press, New York, 1970.
  • [30] A. M. Ostrowski, Solution of equations in Euclidean and Banach spaces, Academic press, New York, 1973.
  • [31] I. P˘av˘aloiu, Introduction in the Theory of Approximation of Equations Solutions, Dacia Ed., Cluj-Napoca, 1976.
  • [32] F. A. Potra, The rate of convergence of a modified Newton’s process. With a loose Russian summary, Apl.Mat., 26(1) (1981), 13-17.
  • [33] F. A. Potra, An error analysis for the secant method, Numer. Math., 38(82) (1981), 427-445.
  • [34] F. A. Potra, On the convergence of a class of Newton-like methods. Iterative solution on nonlinear system of equations, (Oberwolfach, 1982), 125-137, Lecture Notes in Math., 953, Springer, Berlin-New York, 1982.
  • [35] F. A. Potra, Sharp error bounds for a class of Newton-like methods, Libertas Math., 5 (1985), 71-84.
  • [36] F. A. Potra, V. Ptak, Sharp error bounds for Newton’s process, Numer. Math., 34(1) (1980), 63-72.
  • [37] F. A. Potra, V. Ptak, Nondiscrete Induction and Iterative Processes. Research Notes in Mathematics, 103, Pitman (Advanced Publishing Program), Boston, MA, 1984.
  • [38] P. D. Proinov, General local convergence theory for a class of iterative processes and its applications to Newton’s method, J. Complex., 25 (2009), 38-62.
  • [39] P. D. Proinov, New general convergence theory for iterative processes and its applications to Newton-Kantorovich type theorem, J. Complex., 26 (2010), 3-42.
  • [40] H. Ren, Q. Wu, Convergence ball of a modified secant method with convergence order 1.839   , Appl. Math. Comput., 188 (2007), 281-285.
  • [41] H. Ren, Q. Wu, A note on some new iterative methods with third-order convergence, Appl. Math. Comput., 188 (2007), 1790-1793.
  • [42] W. C. Rheinboldt, A unified convergence theory for a class of iterative processes, SIAM J. Numer. Anal., 5 (1968), 42-63.
  • [43] R. A. Tapia, Classroom Notes: The Kantorovich Theorem for Newton’s method, Amer. Math. Monthly, 78(4) (1971), 389-392.
  • [44] T. Yamamoto, A convergence theorem for Newton-like methods in Banach spaces, Numer.Math., 51 (1987), 545-557.
  • [45] P. P. Zabrejko, D. F. Nguen, The majorant method in the theory of Newton-Kantorovich approximations and the Pt´ak error estimates, Numer. Funct. Anal. Optim., 9 (1987), 671-684.
  • [46] A. I. Zincenko, Some approximate methods of solving equations with nondifferentiable operators, (Ukrainian), Dopovidi Akad. Nauk Ukra¨ın. RSR, (1963), 156-161.