Unrestricted Fibonacci and Lucas quaternions

Unrestricted Fibonacci and Lucas quaternions

Many quaternion numbers associated with Fibonacci and Lucas numbers or even their generalizations have been defined and widely discussed so far. In all the studies, the coefficients of these quaternions have been selected from consecutive terms of these numbers. In this study, we define other generalizations for the usual Fibonacci and Lucas quaternions. We also present some properties, including the Binet's formulas and d'Ocagne's identities, for these types of quaternions.

___

  • [1] A. F. Horadam, Complex Fibonacci numbers and Fibonacci quaternions, Amer. Math. Monthly, 70(2) (1963), 289–291.
  • [2] M. R. Iyer, A note on Fibonacci quaternions, The Fibonacci Quart., 7(2) (1969), 225–229.
  • [3] S. Halici, On Fibonacci quaternions, Adv. Appl. Clifford Algebr., 22(2) (2012), 321–327 .
  • [4] M. N. S. Swamy, On generalized Fibonacci quaternions, The Fibonacci Quart., 11(5) (1973), 547–550.
  • [5] C. Flaut, V. Shpakivskyi, On generalized Fibonacci quaternions and Fibonacci-Narayana quaternions, Adv. Appl. Clifford Algebr., 23(3) (2013), 673–688.
  • [6] M. Akyigit, H. H. Kosal, M. Tosun, Fibonacci generalized quaternions, Adv. Appl. Clifford Algebr., 24(3) (2014), 631–641.
  • [7] D. Tasci, F. Yalcin, Fibonacci-p quaternions, Adv. Appl. Clifford Algebr., 25(1) (2015), 245–254.
  • [8] J. L. Ramirez, Some combinatorial properties of the k-Fibonacci and the k-Lucas quaternions, An. St. Univ. Ovidius Constanta, 23(2) (2015), 201–212.
  • [9] F. Torunbalci Aydin, On the bicomplex k-Fibonacci quaternions, Commun. Adv. Math. Sci., 2(3) (2019), 227–234.
  • [10] F. Torunbalci Aydin, Hyperbolic Fibonacci sequence, Univers. J. Math. Appl., 2(2) (2019), 59–64.
  • [11] M. A. Gungor, A. Cihan, On dual hyperbolic numbers with generalized Fibonacci and Lucas numbers components, Fundam. J. Math. Appl., 2(2) (2019), 162–172.
  • [12] T. Koshy, Fibonacci and Lucas Numbers with Applications, John Wiley and Sons, New York, 2001.
  • [13] D. Zeilberger, The method of creative telescoping, J. Symbolic Comput., 11(3) (1991), 195–204.