Determination of optical constants and band gap variation of Zn0.98-xCu0.02MgxO thin films

Determination of optical constants and band gap variation of Zn0.98-xCu0.02MgxO thin films

Cu doped ZnO (ZnCuO) is a very important candidate for electronic applications, since it has been shown that it possesses p–type conductivity. In order to broaden its applications, it is crucial to tune optical and electronic properties. In this study, by doping ZnCuO with magnesium, variation of refractive index, extinction coefficient, and band gap of thin films were investigated. Optical constants were evaluated using a transmittance model which is derived from Fresnel equations. Refractive indices of thin films were expressed as a dispersion relation in a polynomial form, while extinction coefficients were modelled as a convolution by Lorentzian curves. It was observed that magnesium doping decreased the refractive index and also caused a blue shift in absorption edge which is a clear indicator of band gap widening.

___

  • Akcan, D., Ozharar, S., Ozugurlu, E., & Arda, L. (2019). The effects of Co/Cu Co-doped ZnO thin films: An optical study. Journal of Alloys and Compounds, 797, 253-261.
  • Alev, O., Ergun, I., Oezdemir, O., Arslan, L. C., Buyukkose, S., & Ozturk, Z. Z. (2021). Enhanced ethanol sensing performance of Cu-doped ZnO nanorods. Materials Science in Semiconductor Processing, 136, 106149.
  • Baig, F., Ashraf, M. W., Asif, A., & Imran, M. (2020). A comparative analysis for effects of solvents on optical properties of Mg doped ZnO thin films for optoelectronic applications. Optik, 208, 164534.
  • Cao, L., Zhu, L., & Ye, Z. (2013). Enhancement of p-type conduction in Ag-doped ZnO thin films via Mg alloying: The role of oxygen vacancy. Journal of Physics and Chemistry of Solids, 74(5), 668-672.
  • Chen, Z., & Jaramillo, T. (2017). The Use of UV-Visible Spectroscopy to Measure the Band Gap of a Semiconductor. https://mmrc.caltech.edu/CaryUV-Vis Int.Sphere/Literature/ Spectroscopy Jaramillo.pdf, Last accessed on July, 2022.
  • El Hamidi, A., El Mahboub, E., Meziane, K., El Hichou, A., & Almaggoussi, A. (2021). The effect of electronegativity on optical properties of Mg doped ZnO. Optik, 241, 167070.
  • Ferlauto, A. S., Ferreira, G. M., Pearce, J. M., Wronski, C. R., Collins, R. W., Deng, X., & Ganguly, G. (2002). Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: Applications in thin film photovoltaics. Journal of Applied Physics, 92(5), 2424-2436.
  • Janotti, A., & Van de Walle, C. G. (2009). Fundamentals of zinc oxide as a semiconductor. Reports on Progress in Physics, 72(12), 126501.
  • Kang, S. J., & Joung, Y. H. (2007). Influence of substrate temperature on the optical and piezoelectric properties of ZnO thin films deposited by rf magnetron sputtering. Applied Surface Science, 253(17), 7330-7335.
  • Kaya, S., Akcan, D., Ozturk, O., & Arda, L. (2018). Enhanced mechanical properties of yttrium doped ZnO nanoparticles as determined by instrumented indentation technique. Ceramics International, 44(9), 10306-10314.
  • Kim, I. Y., Shin, S. W., Gang, M. G., Lee, S. H., Gurav, K. V., Patil, P. S., ... & Kim, J. H. (2014). Comparative study of quaternary Mg and Group III element co-doped ZnO thin films with transparent conductive characteristics. Thin Solid Films, 570, 321-325.
  • Latzel, M., Gobelt, M., Bronstrup, G., Venzago, C., Schmitt, S. W., Sarau, G., & Christiansen, S. H. (2015). Modeling the dielectric function of degenerately doped ZnO: Al thin films grown by ALD using physical parameters. Optical Materials Express, 5(9), 1979-1990.
  • Look, D. C. (2001). Recent advances in ZnO materials and devices. Materials Science and Engineering: B, 80(1-3), 383-387.
  • Mhamdi, A., Mimouni, R., Amlouk, A., Amlouk, M., & Belgacem, S. (2014). Study of copper doping effects on structural, optical and electrical properties of sprayed ZnO thin films. Journal of Alloys and Compounds, 610, 250-257.
  • Ning, Y., Zhang, Z., Teng, F., & Fang, X. (2018). Novel transparent and self‐powered UV photodetector based on crossed ZnO nanofiber array homojunction. Small, 14(13), 1703754.
  • Ozgur, U., Alivov, Y. I., Liu, C., Teke, A., Reshchikov, M., Dogan, S., Avrutin, V., Cho, S.-J., Morkoc, A. H. (2005). A comprehensive review of ZnO materials and devices. Journal of Applied Physics, 98(4), 11.
  • Park, S. Y., Kim, B. J., Kim, K., Kang, M. S., Lim, K. H., Lee, T. I., Myoung, J.M., Hong Koo Baik Kim, Y. S. (2012). Low‐temperature, solution‐processed and alkali metal doped ZnO for high‐performance thin‐film transistors. Advanced Materials, 24(6), 834-838.
  • Ozharar, S., Akcan, D., & Arda, L. (2016). Determination of the refractive index and the thickness of double side coated thin films. Journal of Optoelectronics and Advanced Materials, 18(January-February 2016), 65-69.
  • Sahin, Y., Ozturk, S., Kilinc, N., Kosemen, A., Erkovan, M., & Ozturk, Z. Z. (2014). Electrical conduction and NO2 gas sensing properties of ZnO nanorods. Applied Surface Science, 303, 90-96.
  • Scarminio, J., Urbano, A., & Gardes, B. (1999). The Beer-Lambert law for electrochromic tungsten oxide thin films. Materials Chemistry and Physics, 61(2), 143-146.
  • Sennik, E., Kerli, S., Alver, U., & Ozturk, Z. Z. (2015). Effect of fluorine doping on the NO2-sensing properties of ZnO thin films. Sensors and Actuators B: Chemical, 216, 49-56.
  • Suja, M., Bashar, S. B., Morshed, M. M., & Liu, J. (2015). Realization of Cu-doped p-type ZnO thin films by molecular beam epitaxy. ACS Applied Materials & Interfaces, 7(16), 8894-8899.
  • Sun, X. W., & Kwok, H. S. (1999). Optical properties of epitaxially grown zinc oxide films on sapphire by pulsed laser deposition. Journal of Applied Physics, 86(1), 408-411.
  • Tonbul, B., Can, H. A., Ozturk, T., & Akyildiz, H. (2021). Solution processed aluminum-doped ZnO thin films for transparent heater applications. Materials Science in Semiconductor Processing, 127, 105735.
  • Tulun, F. R., Ozturk, S., & Ozturk, Z. Z. (2016). The NO2 sensing properties of the sensors done with nano-tetrapods. Acta Physica Polonica A, 129(4), 797-799.
  • Yalcin, B., Akcan, D., Yalcin, I. E., Alphan, M. C., Senturk, K., Ozyigit, I. I., & Arda, L. (2020). Effect of Mg doping on morphology, photocatalytic activity and related biological properties of Zn1-xMgxO nanoparticles. Turkish Journal of Chemistry, 44(4), 1177-1199.
  • Yang, S., Liu, Y., Zhang, Y., & Mo, D. (2009). Spectroscopic ellipsometry studies of Mg‐doped ZnO thin films prepared by the sol-gel method. Physica Status Solidi (A), 206(7), 1488-1493.
  • Za'Aba, N. K., Sarjidan, M. M., Majid, W. A., Kusrini, E., & Saleh, M. I. (2014). Junction properties and conduction mechanism of new terbium complexes with triethylene glycol ligand for potential application in organic electronic device. Journal of Rare Earths, 32(7), 633-640.
  • Zang, Z. (2018). Efficiency enhancement of ZnO/Cu2O solar cells with well oriented and micrometer grain sized Cu2O films. Applied Physics Letters, 112(4), 042106.