Yarı kurak koşullarda bitki grubu büyüklüğünün bazı toprak kimyası parametrelerine etkisi

DOI: 10.26650/forestist.2019.19001Bu çalışma, farklı büyüklükteki bitki örtüsü gruplarının toprak kimyası üzerindeki etkilerinin incelenmesi amacıyla İç Anadolu’nun yarıkurak özelliklerini temsil eden Çankırı bölgesinde gerçekleştirilmiştir. İncelenen toprak kimyası parametreleri, elektriksel iletkenlik, pH, potasyum, kalsiyum, magnezyum, fosfor, toplam azot ve toplam karbon’dur. Bitki örtüsü grupları, tepe tacı çapının büyüklüğüne göre 0-4 metre (m) (küçük), 4-8 m (orta) ve > 8 m (büyük) olmak üzere üç gruba ayrılmıştır. Toprak örnekleri tepe tacının hemen altından ve tepe tacının çapı kadar uzağından olmak üzere 10 cm derinliğinde üst topraktan üçer örnek olarak alınmış ve bu toprak örnekleri her bitki örtüsü büyüklüğünü temsil etmek üzere karıştırılarak tek bir genel örnek haline getirilmiştir. Toplamda, küçük bitki grupları için 20, orta ve büyük bitki grupları için 14’er adet genel toprak örneği oluşturulmuştur. Sonuçlar, bitki gruplarının büyüklüğünün üst topraktaki fosfor ve toplam azot üzerinde etkili olduğunu, diğer parametreler üzerinde ise istatistiki anlamda herhangi bir etkisinin olmadığını göstermiştir. Büyük bitki gruplarından alınan toprak örneklerindeki fosfor miktarı 0,03 gram/litre (g/L) ile orta (0,01 g/L) ve küçük (0,01 g/L) bitki gruplarından alınan örneklerden yüksek çıkmıştır. Toplam azot miktarı da büyük bitki gruplarından alınan örneklerde (%0,70), orta (%0,60) ve küçük (%0,62) bitki gruplarından alınan toprak örneklerindekinden önemli ölçüde yüksek çıkmıştır. Hem azot hem de fosfor bitki gelişiminde ve yaşamında önemli besin elementleri olduğundan, sonuçlar yarıkurak koşullarda yapılacak rehabilitasyon çalışmalarında büyük bitki gruplarının toprakların azot ve fostor içeriğine yaptıkları pozitif etkiden dolayı temizlenmeyerek sahada bırakılmalarının uygun olacağını göstermektedir.  Cite this paper as: Özçelik, M.S., Gökbulak, F., Şengönül, K., 2019. Effect of vegetation patch size on selected chemical properties of soils under semiarid climate conditions. Forestist 69(2): 117-123.

Effect of vegetation patch size on selected chemical properties of soils under semiarid climate conditions

DOI: 10.26650/forestist.2019.19001This study aimed to investigate effects of vegetation patches of different sizes on selected chemical characteristics of soil. The study was carried out in a semiarid region of Central Anatolia. Based on average diameter of the canopy, vegetation patches in the site were divided into three groups: 0–4 meters (m) (small), 4–8 m (medium), and >8 m (large). Soil samples were collected from under the patch canopy and near the canopy at the topsoil. The soil samples were mixed, and one subsample was taken as a representative of each patch size. A total of 20 subsamples for the small, 14 for the medium-sized, and 14 for the large patches were collected. The soil samples were analyzed for electrical conductivity, pH, potassium, calcium, magnesium, phosphorus, total nitrogen, and total carbon. Results showed that patch size had a significant effect on the phosphorus and total nitrogen contents of the topsoil. Topsoil around the large patches had significantly greater phosphorus content 0.03 grams/liter (g/L) than small (0.01 g/L) and medium-sized (0.01 g/L) patches. Similar to phosphorus values, the topsoil around the large patches had significantly greater total nitrogen content (0.70%) than the topsoil around the small (0.62%) and medium-sized (0.60%) patches. Since both nitrogen and phosphorus nutrients are important elements for early plant growth and survival, large patches should not be cleared from the sites during the land rehabilitation works due to their positive impacts on the topsoil under fragile landscape conditions in the semiarid regions. Cite this paper as: Özçelik, M.S., Gökbulak, F., Şengönül, K., 2019. Effect of vegetation patch size on selected chemical properties of soils under semiarid climate conditions. Forestist 69(2): 117-123.

___

  • Aguiar, M.R., Sala, O.E., 1994. Competition, facilitation, seed distribution and the origin of patches in a Patagonian steppe. Oikos, 70, 26-34. Aguiar, M.R., Sala, O.E., 1999. Patch structure, dynamics and implications for the functioning of arid ecosystems. Trends in Ecology and Evolution 14(7): 273-277. APHA, AWWA, WPCF., 1975. Standard Methods for the Examination of Water and Wastewater. 14th edition, Washington, DC. Boer, M., Puigdefábregas, J., 2005. Effects of spatially structured vegetation patterns on hillslope erosion in a semiarid Mediterranean environment: a simulation study. Earth Surface Processes and Land Forms 30: 149-167. Cerdán, M., Sánchez-Sánchez, A., Jordá, J.D., Amat, B., Cortina, J., Ruiz-Vicedo, N., El-Khattabi, M., 2016. Characterization of water dissolved organic matter under woody vegetation patches in semi-arid Mediterranean soils. Science of the Total Environment 553: 340-348. Cross, A.F., Schlesinger, W.H., 1999. Plant regulation of soil nutrient distribution in the northern Chihuahuan Desert. Plant Ecolology 145: 11-25. Erickson, H.E., Soto, P., Johnson, D.W., Roath, B., Hunsaker, C., 2005. Effects of vegetation patches on soil nutrient pools and fluxes within a mixed-conifer forest. Forest Science 51(3): 211-220. Fan, J.W., Du, Y.L., Wang, B.R., Turner, N.C., Wang, T., Abbott, L.K., Stefanova, K., Siddique, K.H.M., Li, F.M., 2016. Forage yield, soil water depletion, shoot nitrogen and phosphorus uptake and concentration, of young and old stands of alfalfa in response to nitrogen and phosphorus fertilisation in a semiarid environment. Field Crops Research 198: 247-257. Fenn, M.E., Perea-Estrada, V.M., de Bauer, L.I., Perez-Suarez, M., Parker, D.R., Cetina-Alcala, V.M., 2006. Nutrient status and plant growth effects of forest soils in the Basin of Mexico. Environmental Pollution 140: 187-199. Firmansyah, I., Spiller M., de Ruijter, F.J., Carjens, G.J., Zeeman, G., 2017. Assessment of nitrogen and phosphorus flows in agricultural and urban systems in a small island under limited data availability. Science of the Total Environment 574: 1521-1532. Fraser, L.H., & Carlyle, C.N., 2011. Is spotted knapweed (Centaurea stoebe L.) patch size related to the effect on soil and vegetation properties? Plant Ecology 212: 975-983. Gökbulak, F., 2013. Vegetation Analyses in Rangelands. Istanbul University publication no: 5151, Faculty of Forestry publication no: 503. Yazın Basın Matbaacılık TRZ. Tic. Ltd. Şti: Istanbul-Turkey. Gülçur, F., 1974. Toprağın fiziksel ve kimyasal analiz metodları. İstanbul Üniversitesi Orman Fakültesi Yayınları, İ.Ü. Yayın No: 1970, OF Yayın No: 201, Kutulmuş Matbaası, İstanbul (In Turkish). IBM, 2012. IBM Corp. Released IBM SPSS statistics for Windows, version 21.0. Armonk: IBM Corp. Lequy, E., Calvaruso, C., Conil, S., Turpault, M.P., 2014. Atmospheric particulate deposition in temperate deciduous forest ecosystems: Interactions with the canopy and nutrient inputs in two beech stands of Northeastern France. Science of the Total Environment 48: 206-215. Li, J., Guo, Q., Zhang, J., Korpelainen, H., Li, C., 2016. Effects of nitrogen and phosphorus supply on growth and physiological traits of two Larix species. Environmental and Experimental Botany 130: 206-215. Maestre, F.T., Cortina, J., 2002. Spatial patterns of surface soil properties and vegetation in a Mediterranean semi-arid steppe. Plant and Soil 241: 279-291. Maestre, F.T., Escudero, A., 2009. Is the patch size distribution of vegetation a suitable indicator of desertification processes? Ecology 90(7): 1729-1735. Muvengwi, J., Ndagurwa, H.G.T., Nyenda, T., 2015. Enhanced soil nutrient concentrations beneath-canopy of savanna trees infected by mistletoes in a southern African savanna. Journal of Arid Environments 116: 25-28. Puigdefábregas, J., 2005. The role of vegetation patterns in structuring runoff and sediment fluxes in drylands. Earth Surface Processes and Landforms 30: 133-147. Ridolfi, L., Laio, F., D’Odorico, P., 2008. Fertility island formation and evolution in dryland ecosystems. Ecology and Society 13(1): 5. Online document. Available from: http://www.ecologyandsociety.org/vol13/iss1/art5/. Accessed 13 October 2017. Roundy, B.A, Call, C.A., 1988. Revegetation of arid and semiarid rangelands, in: P.T. Tueller (ed.), Vegetation Science Applications for Rangeland Analysis and Management. Kluwer Academic Publishers, Dordrecht, Boston. Schade, J.D, Sponseller, R., Collins, S.L., Stiles, A., 2003. The influence of Prosopis canopies on understorey vegetation: Effects of landscape position. Journal of Vegetation Science 14: 743-750. Schade, J.D., Hobbie, S.E., 2005. Spatial and temporal variation in islands of fertility in the Sonoran Desert. Biogeochemistry 73: 541-553. Uchida, R., 2000. Essential Nutrients for Plant Growth: Nutrient Functions and Deficiency Symptoms. In: Silva A.J., and Uchida, R. (Eds.), Plant Nutrient Management in Hawaii’s Soils, Approaches for Tropical and Subtropical Agriculture, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu. Vásquez-Méndez, R., Ventura-Ramos, E., Oleschko, K., Hernández-Sandoval, L., Parrot, J.F., Nearing, M.A., 2010. Soil erosion and runoff in different vegetation patches from semiarid Central Mexico. Catena 80: 162-169. Zar, J.H. 1996. Biostatistical Analysis. 3rd ed. Prentice-Hall, Upper Saddle River. Zhao, D., Reddy, K.R., Kakani V.G., Reddy V.R., 2005. Nitrogen deficiency effects on plant growth, leaf photosynthesis, and hyperspectral reflectance properties of sorghum. European Journal of Agronomy 22: 391-403.