Isıl işlemin sarıçam diri odunu ve öz odununun makroskobik ve fiziksel özellikleri üzerindeki etkileri

DOI: 10.26650/forestist.2018.343295Isıl işlemin (ThermoWood) sarıçam diri odunu ve öz odununun makro yapısı ve fiziksel özellikleri üzerindeki etkileri görsel olarak ve ilgili standartlar (ASTM D2244, TS 2472) aracılığıyla incelenmiştir. Thermo-S için 190 ̊ C ve Thermo-D için 212 ̊ C olmak üzere iki farklı işlem kullanılmıştır. Isıl işlemin etkilerini karşılaştırmak amacıyla fırın kurusu örnekleri referans alınmıştır. Makroskobik incelemeler sonucunda tüm örneklerde yüzeysel çatlakların oluştuğu ve sıcaklık arttıkça çatlakların sayısının ve şiddetinin arttığı görülmüştür. Sadece Thermo-D uygulanmış öz odun örneklerinde iç çatlak oluşumu ve oluklaşma tespit edilmiştir. Fiziksel incelemeler göstermektedir ki sıcaklık arttıkça örneklerin rengi koyulaşmakta, yoğunluk değerleri düşmekte ve boyutsal stabilizasyon iyileşmektedir. Anti Genişleme Etkisi sırasıyla Thermo-S ve Thermo-D diri odun örnekleri için %17,04 ve %24,77, öz odun örnekleri için %11,97 ve %30,45 olarak belirlenmiştir. Hava kurusu yoğunluk değerlerindeki en yüksek azalma oranı Thermo-D uygulanmış öz odun örneklerinde %14,04 olarak tespit edilmiştir. Sıcaklığın artması sonucu oluşan bu azalma eğiliminin çatlak oluşumu ile ilişkili olduğu düşünülmektedir.

Effects of heat treatment on some macroscopic and physical properties of Scots pine sapwood and heartwood

DOI: 10.26650/forestist.2018.343295Impact of heat treatment (ThermoWood) on the macro structure and physical properties of Scots pine sapwood and heartwood were studied by visual examinations, using the following relevant standard test methods: ASTM D2244 and TS 2472, respectively. In the study, two processes-Thermo-S (190 ̊ C) and Thermo-D (212 ̊ C)-were employed for heat treatment. To compare the effect of different types of heat treatment, kiln dried wood samples were used for reference. Macroscopic investigation showed that superficial cracks occurred in all samples, and as the temperature increased, the severity and number of cracks increased. In the Thermo-D process, internal cracks and cupping were seen only in heartwood samples. Physical examination showed that as the temperature increased, color of the samples darkened, the density of the samples decreased, dimensional stability was enhanced. The Anti Swelling-Efficiency (ASE) in the Thermo-S and Thermo-D processes evaluated in sapwood samples was 17.04% and 24.77%, respectively; however, values in the heartwood samples were 11.97% and 30.45%, respectively. The highest reduction ratio of air dried density was 14.04% in the Thermo-D process applied to the heartwood samples. Thus, it can be concluded that this reduction due to the increased temperature is related to the formation of internal cracks.

___

  • Abe, K., Yamamoto, H., 2005. Mechanical interaction between cellulose microfibril and matrix substance in wood cell wall determined by X-ray diffraction. Journal of Wood Science 51(4): 334-338.
  • Akgul, M., Korkut, S., 2012. The effect of heat treatment on some chemical properties and colour in Scots pine and Uludağ fir wood. International Journal of Physical Sciences 7(21): 2854-2859.
  • Altgen, M., Adamopoulos, S., Ala-Viikari, J., Hukka, A., Tetri, T., Militz, H., 2012. Factors Influencing The Crack Formation In Thermally Modified Wood. In: Proceedings of The Sixth European Conferance On Wood Modification, Ljubljana, Slovenia.
  • Altgen, M., Adamopoulos, S., Militz, H., 2015. Wood Defects During Industrial Scale Production Of Thermally-Modified Norway Spruce And Scots Pine. Wood Material Science and Engineering 12(1): 14-23.
  • Andersson, S., Wikberg, H., Pesonen, E., Maunu, S.L., Serimaa, R., 2004. Studies of Crystallinity of Scots Pine And Norway Spruce Cellulose. Trees 18(3): 346-353.
  • Anonymous, 2003. Thermowood Handbook. Finnish Thermowood Association, Fin-00171 Helsinki-Finland.
  • Awoyemi, L., Jones, I.P., 2011. Anatomical Explanations For The Changes In Properties Of Western Red Cedar (Thuja Plicata) Wood During Heat Treatment. Wood Science Technology 45: 261–267.
  • Bekhta, P.; Niemz, P., 2003. Effect of high temperature on the change of color, dimensional stability and mechanical properties of spruce wood. Holzforschung 57: 539-546.
  • Boonstra M.J., Rijsdijk, J., Sander, C., Kegel, E., Tjeerdsma, B., Militz, H., Van Acker, J., Stevens, M., 2006. Microstructural And Physical Aspects Of Heat-Treated Wood. Part 1, Softwood. Maderas Ciencia Y Tecnología 8: 193-208.
  • Boonstra M.J., 2008. A Two-Stage Thermal Modification of Wood, Ph.D. Dissertation in Cosupervision Ghent University and Université Henry Poincaré, ISBN 978-90- 5989-210-1.
  • Dogu, D., Tirak, K., Candan, Z., Unsal, O., 2010. Anatomical Investigation Of Thermally Compressed Wood Panels. Bioresources 5(4): 2640-2663.
  • Dogu, D., Tirak Hizal, K., Bakir, D., Tuncer, F.D., Candan, Z., Unsal, O., 2015. Anatomical Structures Of Thermally Compressed Paulownia (Paulownia spp.) Wood. In: Proceedings of the 58th International Convention Of Society Of Wood Science And Technology, Wyoming, ABD.
  • Dogu, D., Bakir, D., Tuncer, F.D., Tirak Hizal, K., Candan, Z., Unsal, O., 2016. Microscopic Investigation Of Defects In Thermally Compressed Poplar Wood Panels. Maderas Ciencia Tecnologia 18(2): 337-348.
  • Dubey, M.K., 2010. Improvements in Stability, Durability And Mechanical Properties of Radiata Pine Wood After Heat-Treatment In A Vegetable Oil. Doctoral Thesis, University of Canterbury, Forestry, New Zealand.
  • Esteves, B., Velez Marques, A. Domingos, I., Pereira, H., 2008. Heat induced colour changes of pine (Pinus pinaster) and eucalypt (Eucalyptus globulus) wood. Wood Science & Technology 42(5): 369–384.
  • Esteves, B., Pereira, H.M., 2009. Wood Modification by Heat Treatment: A Review. BioResources 4(1): 370-404.
  • Esteves, B., Nunes, L., Domingos, I., Pereira, H. 2013. Comparison between heat treated sapwood and heartwood from Pinus pinaster. European Journal of Wood and Wood Products 72(1): 53–60.
  • Fengel, D., Wegener, G., 1989. Wood: Chemistry, Ultrastructures, Reactions. Walter De Gruyter And Co., Berlin. Gonzalez-Pena, M., Hale, M., 2009. Color in thermally modified wood of beech, Norway spruce and Scots pine, Part 1: Colour evolution and colour changes. Holzforschung 63: 385-393.
  • Gosselink, R.J.A., Krosse, A.M.A, Van Der Putten, J.C., Van Der Kolk, J.C., De Klerk- Engels, B., Van Dam, J.E.G., 2004. Wood Preservation by Low-Temperature Carbonization. Industrial Crops and Products 19: 3–12.
  • Guller, B., 2012. Effects of heat treatment on density, dimensional stability and color of Pinus nigra wood. African Journal of Biotechnology 11(9): 2204-2209.
  • Hietala, S., Maunu, S., Sundholm, F., Jamsa, S., Viitaniemi, P., 2002. Structure Of Thermally Modified Wood Studied By Liquid State NMR Measurements. Holzforschung 56(5): 522-528.
  • Hill, C.A.S., 2006. Wood Modification, Chemical, Thermal and Other Processes. John Wiley& Sons Inc., ISBN-10: 0-470-02172-1. Hillis, W.E., 1987. Heartwood and Tree Exudates Springer-Verlag, Berlin Heidelberg.
  • Johansson, D., 2005. Drying and Heat Treatment of Wood: Influences on Internal Checking. In: Proceedings of the 3rd Nordic Drying Conference, Karstad, Sweden.
  • Johansson, D., 2006. Influence of Drying on Internal Checking of Spruce (Picea abies L.) Heat Treated At 212˚C. Holzforschung 60: 558-560.
  • Johansson, D., 2008. Heat Treatment of Solid Wood, Doctoral Thesis, Lulea University of Technology, Sweden.
  • Kallender, B., Landel, P., 2007. Effects Of Heat Treatment Of Small Clearwood Samples On Equilibrium Moisture Content and Deformation. In: Proceeding of The Quality Control For Wood And Wood Products, Cost E 53 Conference, Warsaw, Poland.
  • Kollmann, F.F.P., Cote, W.A. Jr., 1968. Principles of Wood Science and Technology I: Solid Wood. Berlin: Springer-Verlag. Korkut, S., Kocaefe, D., 2009. Effect of heat treatment on wood properties. Düzce University Journal of Forestry 5(2): 11–34.
  • Metsa-Kortelainen, S., 2011. Differences between sapwood and heartwood of thermally modified Norway spruce (Picea abies) and Scots pine (Pinus sylvestris) under water and decay exposure, VTT, Espoo. VTT Publications.
  • Metsa-Kortelainen, S., Viitanen, H., 2012. Wettability of sapwood and heartwood of thermally modified Norway spruce and Scots pine. European Journal of Wood and Wood Products 70: 135–139.
  • Militz, H., 2002. Heat treatment of wood. European processes and their background. In: Proceedings of International Research Group Wood Pre., Section 4-Processes N IRG/WP 02-40242.
  • Percin, O., Peker, H., Atılgan, A., 2016. The effect of heat treatment on the some physical and mechanical properties of beech (Fagus orientalis Lipsky) wood. Wood Research 61(3): 443-456.
  • Rowell, R.M., 2005. Handbook of wood chemistry and wood composites. CRC Press, Florida, USA. Schweingruber, F.H., 2007. Wood Structure and Environment. Berlin: Springer-Verlag. Isbn-13:978-3-540-48299-4.
  • Sehlstedt-Persson M., Johansson D., Moren T., 2006. Effect of Heat Treatment on the Microstructure of Pine, Spruce and Birch and the Influence on Capillary Absorption. In: Proceedings of the 5th IUFRO Symposium “Wood Structure And Properties ‘06”, Sliac – Sielnica, Slovakia, Sep 3–6 2006, Isbn 80–968869–4–3, 251–255.
  • Sehlstedt-Persson M., 2008. Impact of Drying and Heat Treatment on Physical Properties and Durability of Solid Wood, Doctoral Thesis, Lulea University of Technology, Sweden.
  • Sundqvist, B., 2004. Colour Changes and Acid Formation in Wood during Drying, Doctoral Thesis, Lulea University of Technology, Sweden.
  • Suttie, E., Thompson, J.H.R., 2004. Opportunites for Uk Grown Timber: Wood Modification State of the Art Review. Dti Contruction Industry Directorate and Forestry Commission, Project Report Number 203-343.
  • Todorovic, N., Popovic, Z., Milic, G., Popadic, R., 2012. Estimation of Heat-treated Beech wood Properties by Color Change. Bioresource 7(1): 799-815.
  • Viitanen, H., Jamsa, S., Paajanen, L., Nurmi, A., Viitaniemi, P., 1994. The Effect of Heat Treatment on The Properties of Spruce. In: Irg/Wp/40032 Annual Meeting, Section 4, 1-4, Indonesia.
  • Viitaniemi, P., Jamsa, S., 1996. Modification of Wood With Heat Treatment. Vtt Building Tech-nology, Espoo: Vtt Publications 814, Finland.
  • Wangaard, F.F., Granados, L.A., 1967. The effects of extractives on water-vapour sorption by wood. Wood Science & Technology 1: 253-277.
  • Ward, J.C., Simpson, W.T., 1991. Wood Defects. In: Dry Kiln Operator’s Manual, Agriculture Handbook Ah-188, 179-205. Weiland, J.J., Guyonnet, R., 2003.Study of chemical modifications and fungi degradation of thermally modified wood using DRIFT spectroscopy. Holzals Roh-und Werkstoff 61(3): 216-220.
  • Yildiz, U.C., Gercek, Z., Serdar, B., Yildiz, S., Gezer, E.D., Dizman, E., Temiz, A., 2004. The Effects of Heat Treatment on Anatomical Changes of Beech Wood. In: Irg / Wp 04- 40284, Irg Annual Meeting, 6-10 June, Slovenia.
  • Zobel, B.J., Buijtenen, J.P.V., 1989. Wood Variation: Its Causes and Control. Berlin: Springer-Verlag. Isbn-13:978-3-642-74071-8, Doi: 10.1007/978-3-642-74069-5.