Geri Dönüşüm Agregalı Betonların Çökme Değerlerinin Tepki Yüzeyi Metodu ile Tahmini

Bu çalışmanın amacı farklı oranlarda geri dönüşümlü beton agregası kullanılarak üretilen betonların çökme değerlerini yüksek doğrulukla tahmin eden matematiksel bir model geliştirmektir. Bu amaçla farklı karışımlara sahip beton serileri üretilmiş ve bu serilere ait çökme değerleri kullanılarak tepki yüzeyi metodu üzerinde istatistik analizler yapılmıştır. Yapılan analizler sonucunda geliştirilen modelin belirlilik katsayısı 0.87 olarak hesaplanmış ve bu durum modelin yüksek doğruluklu ve etkin bir şekilde kullanılabileceğini göstermiştir. Geri dönüşümlü beton agregaları yüksek su emme kapasitesi, düşük yoğunluk ve geniş karakteristik özelliklere sahip olduğundan geliştirilen bu modelin benzer yoğunluk ve su emme değerlerine sahip olan geri dönüşüm agregalı betonların çökme değerlerini pratik ve yüksek doğrulukla tahmin edileceği düşünülmektedir. Böylece bu modelin kullanımının, beton karışım hesapları ve deneme karışımları sürecinde zaman ve işçilik açısından faydalar sağlayacağı düşünülmektedir.

Prediction of Slump Values of Recycled Aggregate Concretes by Response Surface Method

The aim of this study is to develop a mathematical model that predicts the slump values of concrete produced by using recycled concrete aggregate in different proportions with high accuracy. For this purpose, concrete series with different mixtures were produced and statistical analyzes were made on the response surface method by using the slump values of these series. As a result of the analyses made, the coefficient of determination of the developed model was calculated as 0.87 and this showed that the model could be used with high accuracy and effectively. Using this model, it is thought that the slump values of the concretes to be produced using recycled concrete aggregates with similar density and water absorption values will be estimated practically and with high accuracy. Thus, using this model will provide benefits in terms of time and labor in the concrete mix calculations and trial mixes.

___

  • J. de-Prado-Gil, C. Palencia, N. Silva-Monteiro, R. Martínez-García, To predict the compressive strength of self compacting concrete with recycled aggregates utilizing ensemble machine learning models, Case Stud. Constr. Mater. 16 (2022) e01046. https://doi.org/10.1016/j.cscm.2022.e01046.
  • M. Shmlls, M. Abed, T. Horvath, D. Bozsaky, Multicriteria Based Optimization of Second Generation Recycled Aggregate Concrete, Case Stud. Constr. Mater. (2022) e01447. https://doi.org/10.1016/j.cscm.2022.e01447.
  • M. Abed, J. Fořt, K. Rashid, Multicriterial life cycle assessment of eco-efficient self-compacting concrete modified by waste perlite powder and/or recycled concrete aggregate, Constr. Build. Mater. 348 (2022) 128696. https://doi.org/10.1016/j.conbuildmat.2022.128696.
  • L.A.L. Ruiz, X.R. Ramon, C.M.L. Mercedes, S.G. Domingo, Multicriteria analysis of the environmental and economic performance of circularity strategies for concrete waste recycling in Spain, Waste Manag. 144 (2022) 387–400. https://doi.org/10.1016/j.wasman.2022.04.008.
  • J.F. Dong, Q.Y. Wang, Z.W. Guan, H.K. Chai, High-temperature behaviour of basalt fibre reinforced concrete made with recycled aggregates from earthquake waste, J. Build. Eng. 48 (2022) 103895. https://doi.org/10.1016/j.jobe.2021.103895.
  • N. Tsydenova, T. Becker, G. Walther, Optimised design of concrete recycling networks: The case of North Rhine-Westphalia, Waste Manag. 135 (2021) 309–317. https://doi.org/10.1016/j.wasman.2021.09.013.
  • M. Ulucan, K.E. Alyamac, An integrative approach of the use of recycled concrete aggregate in high-rise buildings: Example of the Elysium, Struct. Concr. (2022). https://doi.org/10.1002/suco.202200512.
  • M. Ulucan, K.E. Alyamac, A holistic assessment of the use of emerging recycled concrete aggregates after a destructive earthquake: Mechanical, economic and environmental, Waste Manag. 146 (2022) 53–65. https://doi.org/10.1016/j.wasman.2022.04.045.
  • F. de Andrade Salgado, F. de Andrade Silva, Recycled aggregates from construction and demolition waste towards an application on structural concrete: A review, J. Build. Eng. 52 (2022) 104452. https://doi.org/10.1016/j.jobe.2022.104452.
  • S. Marinković, V. Radonjanin, M. Malešev, I. Ignjatović, Comparative environmental assessment of natural and recycled aggregate concrete, Waste Manag. 30 (2010) 2255–2264. https://doi.org/10.1016/j.wasman.2010.04.012.
  • T. Ding, J. Xiao, Estimation of building-related construction and demolition waste in Shanghai, Waste Manag. 34 (2014) 2327–2334. https://doi.org/10.1016/j.wasman.2014.07.029.
  • T. Ding, J. Xiao, V.W.Y. Tam, A closed-loop life cycle assessment of recycled aggregate concrete utilization in China, Waste Manag. 56 (2016) 367–375. https://doi.org/10.1016/j.wasman.2016.05.031.
  • G. Andreu, E. Miren, Experimental analysis of properties of high performance recycled aggregate concrete, Constr. Build. Mater. 52 (2014) 227–235. https://doi.org/10.1016/j.conbuildmat.2013.11.054.
  • N. Tošić, S. Marinković, T. Dašić, M. Stanić, Multicriteria optimization of natural and recycled aggregate concrete for structural use, J. Clean. Prod. 87 (2015) 766–776. https://doi.org/10.1016/j.jclepro.2014.10.070.
  • S. Arumugam, G. Sriram, T. Rajmohan, Multi-response optimization of epoxidation process parameters of rapeseed oil using response surface methodology (RSM)-based desirability analysis, Arab. J. Sci. Eng. 39 (2014) 2277–2287.
  • W. Wang, Y. Cheng, G. Tan, Design optimization of SBS-modified asphalt mixture reinforced with eco-friendly basalt fiber based on response surface methodology, Materials (Basel). 11 (2018) 1311.
  • K.E. Alyamac, E. Ghafari, R. Ince, Development of eco-efficient self-compacting concrete with waste marble powder using the response surface method, J. Clean. Prod. 144 (2017) 192–202. https://doi.org/10.1016/j.jclepro.2016.12.156.
  • M.A.A. Aldahdooh, N.M. Bunnori, M.A.M. Johari, Evaluation of ultra-high-performance-fiber reinforced concrete binder content using the response surface method, Mater. Des. 52 (2013) 957–965.
  • T. Demir, M. Ulucan, K.E. Alyamac, Determination of the Early Age Strength of High-Strength Concrete Using RSM Method, Fırat Univ. J. Eng. Sci. 34 (2022) 105–114. https://doi.org/10.35234/fumbd.972829. B. Demirel, E. Gultekin, K.E. Alyamac, Performance of structural lightweight concrete containing metakaolin after elevated temperature, KSCE J. Civ. Eng. 23 (2019) 2997–3004. https://doi.org/10.1007/s12205-019-1192-x.
  • A. Ustaoglu, B. Kursuncu, M. Alptekin, M.S. Gok, Performance optimization and parametric evaluation of the cascade vapor compression refrigeration cycle using Taguchi and ANOVA methods, Appl. Therm. Eng. 180 (2020) 115816.
  • T. Demir, M. Ulucan, K.E. Alyamac, Development of Combined Methods Using Non-Destructive Test Methods to Determine the In-Place Strength of High-Strength Concretes, Processes (2023) 673-689. https://doi.org/10.3390/pr11030673
Fırat Üniversitesi Mühendislik Bilimleri Dergisi-Cover
  • ISSN: 1308-9072
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 1987
  • Yayıncı: FIRAT ÜNİVERSİTESİ