Benzoik asidin Vitreoscilla hemoglobin geni aktarılmış Pseudomonas aeruginosa tarafından yıkımı

Bu çalışmada, Pseudomomas aeruginosa ile onun Vitreoscilla hemoglobin geni klonlanmış rekombinant susunun önemli. endüstriyel aromatik kirleticilerden birisi olan benzoik asit yıkım yetenekleri araştırılmıştır. Pseudomonas aeruginosa ve çeşitli suşları gen transferi ve ekspresyonu gibi çalışmalarda oldukça yaygın olarak kullanılmaktadır. Bu bakterilerin, çoğu canlılar için zararlı olan birçok heterohalkasal aromatik bileşikleri doğal olarak yıkma potansiyeline sahip olmaları, onlara olan ilgiyi arttırmıştır. Bu çalışmada Vitreoscilla sp.'den elde edilen bakteriyel hemoglobin (VHb) geni (vgb) klonlanmış rekombinant bir suş (PaJC) kullanılarak, iyi bir oksijen alım sistemi olan VHb'nin bu rekombinantm benzoik asiti yıkma potansiyeline etkisi yabanıl tip konakçı bakteri ile karşılaştırmalı biçimde çalışılmıştır.

Degradation of benzoic acid by Pseudomonas aeruginosa engineered with Vitreoscilla hemoglobin gene

This study is concerned with the potential use of Pseudomomas aeruginosa and its recombinant strain carrying Vitreoscilla hemoglobin gene for degradation of an important harmful aromatic compound, the benzoic acid. Pseudomonas aeruginosa and its various strains are widely known for their ease of use characteristics allowing gene transfer and expression. Moreover, a great deal of interest was paid when it was discovered that these bacteria could be utilized for the degradation of many heterocychc aromatic compounds. In this study, a recombinant strain (PaJC) of P. aeruginosa cloned with bacterial hemoglobin (VHb) gene (vgb) from Vitreoscilla sp. was studied in comparison to the wild-type host strain for its benzoic acid degradation potential.

___

  • 1. P. A. Fish, D. A. Webster, and B. C. Stark, Vitreoscilla hemoglobin enhances the first step in 2, 4- dinitrotoluene degradation in vitro and at low aeration in vivo. J. Mol. Cat.B: Enz., 9, 75-82, 2000.
  • 2. S. C. Lui, D. A. Webster and B. C. Stark, Cloning and expression of the Vitreoscilla hemoglobin gene in pseudomonad: Effects on cell growth. Appl. Microbiol Biotechnol., 44, 419-424, 1995.
  • 3. C. Chayabutra, L. K. Ju, Degradation of n- hexadecane and its metabolites by Pseudomonas aeruginosa under microaerobic and anaerobic denitrifying conditions. Appl. Environ. Microbiol., 66, 493-498, 2000.
  • 4. G. K. Stover, X. Q. Pham, A. L. Erwin, S. D. Mizoguchi, P. Warrener, M. J. Hickey, F. S. L. Brinkman, W. O. Hufnagle, D. J. Kowalik, M. Lagrou, R. L. Garber, L. Goltry, E. Tolentino, S. Westbrock-Wadman, Y. Yuan, L. L. Brody, S. N. Coulter, K. R. Folger, A. Kast, K. Larbig, R. Lim, K. Smith, D. Spencer, G. K. S. Wong, I. T. Paulsen, J. Reizer, M. H. Saier, R. E. W. Hancock, S. lorry, M. V. Olsen, Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature, 406, 959-964, 2000.
  • 5. M. T. Madigan, J. Martinko, J. Parker, Brock microbiology and microorganisms. New Jersey (U.S.A), 470-702, 2000.
  • 6. J. G. Leahy, K. D. Tracy, M. H. Eley, Degradation of mixtures of aromatic and chloroaliphatic hydrocarbons by aromatic hydrocarbon- degrading bacteria. FEMS Microbiol. Ecol., 43, 271-276, 2003.
  • 7. M. Bolognesi, D. Bordo, M. Rizzi, C. Tarricone, P. ascenzi, Nonvertebrate hemoglobins: structural bases for reactivity. Prog. Biophys. Molec. Biol., 68, 29-68, 1997.
  • 8. H. Geckil, S. Gencer, H. Kahraman, S. O. Erenler, Genetic engineering of Enterobacter aerogenes with Vitreoscilla hemoglobin gene: Cell growth, survival, and antioxidant enzyme status under oxidative stress. Res. Microbiol., 154, 425-431, 2003.
  • 9. M. Bolgnesi; A. Boffi, M. Coletta, A. Mozzarelli, A. Pesce, C. Tarricone, P. Ascenzi, Anticooperative ligand binding ferric Vitreoscilla homodimeric hemoglobin: Thermodynamic, kinetic, and X- ray crystallographic study. J. Mol. Biol., 291, 637-650, 1999.
  • 10. V. Roos, C. I. J. Andersson, C. Arfvidsson, K. G. Wahlund, L. Bülow, Expression of double Vitreoscilla hemoglobin enhances growth and alters ribosome and tRNA levels in Escherichia coli. Biotechnol. Prog., 18, 652-656, 2002.
  • 11. S. M. Patel, B. C. Stark, K. Hwang, K. L. Dikshit and D. A. Webster, Cloning and expression of Vitreoscilla hemoglobin gene in Burkholderi sp. strain DNT for enhancement of 2, 4- dinitrotoluene degradation. Biotechnol. Prog., 16, 26-30, 2000.
  • 12. M. A. Nasr, K. Hwang, M. Akbas, D. A. Webster and B. C. Stark, Effects of culture on enhancement of 2, 4- dinitrotoluene degredation by Burkholderia engineered with the Vitreoscilla hemoglobin gene. Biotechnol. Prog., 17, 359-361, 2001.
  • 13. J. W. Chung, D. A. Webster, K. R. Pagilla, B. C. Stark, Chromosomal integration of the Vitreoscilla hemoglobin gene in Burkholderia and Pseudomonas for the purpose of producing stable engineered strains with enhanced bioremediating ability. J. Indust. Microbiol. Biotechnol., 27, 27-33, 2001.
  • 14. C. C. Somerville, S. F. Nishino, J. C. Spain, Purification and characterization of nitrobenzene nitroreductase from Pseudomonas pseudoalcaligenes JS45. J. Bacteriol., 177, 3837-3842, 1995.
  • 15. W. H. Noordmand, J. H. J. Wachter, G. J. Boer, D. B. Janssen, The enhancement by surfactants of hexadecane degredation by Pseudomonas aeruginosa varies with substrate availability. J. Biotechnol., 94, 195-212, 2002.
  • 16. S. J. Marshal, G. F. White, Complete denitration of nitroglycerin by bacteria isolated from a wash water soak away. Appl. Environ. Microbiol., 67, 2622-2626, 2001.
  • 17. C. E. French, S. Nicklin, N. C. Bruce, Aerobic degradation of 2,4,6- trinitrotoluene by Enterobacter cloacae PB2 and pentaerythriol tetranitrate reductase. Appl. Environ. Microbiol., 64, 2864-2868, 1998.
  • 18. C. Pasternak, K. Haberzettl, G. Klug; Thioredoxine is involved in oxygen-regulated formation of the photosynthetic apparatus of Rhodobacters phaeroides. J. Bacteriol., 181, 100-106, 1999.
  • 19. M. J. Huertas, E. Duque, L. Molina, R. R. Mora, G. Mosqueda, P. Godoy, B. Christensen, S. Molin, J. L. Ramos, Tolerance to sudden organic solvent shocks by soil bacteria and characterization of Pseudomonas putida strains isolated from toluene polluted sites. Environ. Sci. Technol., 34, 3395-3400, 2000.
  • 20. N. Rajagopal, Growth of gram negative bacteria in the presence of organic solvents. Enzyme Microb. Technol., 19, 606-613, 1996
  • 21. S. Isken, P. M. A. C. Santos, J. A. M. de Bont, Effect of solvent adaptation on the antibiotic resistance in Pseudomonas putida S 12. Appl. Microbiol. Biotechnol., 48, 642-647, 1997.
  • 22. H. G. Schlegy, General microbiology. Cambridge, 1987.
  • 23. S. Liu, D.A. Webster, M. Wei and B. C. Stark, Genetic engineering to contain the Vitreoscilla hemoglobin gene enhances degradation of benzoic acid by Xanthomonas maltophilia. Biotechnol. Bioeng., 49, 101-105, 1996.
  • 24. R. K. W. Hwang, M. Raje, K. Kim, B. C. Stark, K. L. Dikshit, D. A. Webster, Vitreoscilla hemoglobin. J. Biol. Chem., 276, 24781-24789, 2001.
  • 25. K. Park, K. Kim, A. J. Howard, B. C. Stark, D. A. Webster, Vitreoscilla hemoglobin binds to subunit I of cytocrome bo obiquinol oxidases. J. Biol. Chem., 277, 33324-33327, 2002.
Fırat Üniversitesi Fen ve Mühendislik Bilimleri Dergisi-Cover
  • ISSN: 1300-2708
  • Yayın Aralığı: Yılda 4 Sayı
  • Yayıncı: FIRAT ÜNİVERSİTESİ